Skip to main content

The Role of Modern Technologies for Dentin Preservation in Root Canal Treatment

  • Chapter
  • First Online:
Minimally Invasive Approaches in Endodontic Practice
  • 841 Accesses

Abstract

Attempting exploration at the expense of dentin tissue to reveal anatomical variation is still a common practice in root canal treatment, mainly because it relies on bi-dimensional radiographic images and clinical assessments to comprehend root morphology and root canal anatomy. The main purpose of this chapter is to understand the role of technological advances in finding the appropriate resources and maneuvers to (a) completely treat root canal anatomy avoiding residual intracanal infection, (b) balancing the size of the access cavity and the degree of root canal enlargement with the requirements of irrigation methods to achieve optimum disinfection, and (c) preserving root dentin during instrumentation to maintain the mechanical integrity of the root, minimizing the risk of fractures, all of them considered relevant causes of endodontic treatment failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ng Y, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature—Part 1. Effects of study characteristics on probability of success. Int Endod J. 2007;40:921–39.

    Article  PubMed  Google Scholar 

  2. Kishen A. Mechanisms and risk factors for fracture predilection in endodontically treated teeth. Endod Top. 2006;13:57–83.

    Article  Google Scholar 

  3. Wolcott J, Ishley D, Kennedy W, Johnson S, Minnich S, Meyers J. A 5 yr clinical investigation of second mesiobuccal canals in endodontically treated and retreated maxillary molars. J Endod. 2005;31:262–4.

    Article  PubMed  Google Scholar 

  4. Hoen MM, Pink FE. Contemporary endodontic retreatments: an analysis based on clinical treatment findings. J Endod. 2002;28:834–6.

    Article  PubMed  Google Scholar 

  5. Boutsioukis C, Kishen A. Fluid dynamics of syringe based irrigation to optimize antibiofilm efficacy in root canal disinfection. Roots. 2012;2012:22–6.

    Google Scholar 

  6. Abdo SB, Darrat AA, Masaudi SM, Luddin N, Husein A, Khamis MF. Comparison of over flared root canals of mandibular premolars filled with MTA and resin based material: an in vitro study. Smile Dent J. 2012;7:38–42.

    Google Scholar 

  7. Oliet S. Treating vertical root fractures. J Endod. 1984;10:391–6.

    Article  PubMed  Google Scholar 

  8. Ossareh A, Rosentritt M, Kishen A. Biomechanical studies on the effect of iatrogenic dentin removal on vertical root fractures. J Conserv Dent. 2018;21:290–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paqué F, Balmer M, Attin T, Peters OA. Preparation of oval-shaped root canals in mandibular molars using nickel-titanium rotary instruments: a micro-computed tomography study. J Endod. 2010;36:703–7.

    Article  PubMed  Google Scholar 

  10. Goodacre CJ, Spolink KJ. Prosthodontic management of endodontically treated teeth: a literature review. Part I. Success and failure data, treatment concepts. J Prosthodont. 1994;3:243–50.

    Article  PubMed  Google Scholar 

  11. Clark D, Khademi JA. Case studies in modern molar endodontic access and directed dentin conservation. Dent Clin N Am. 2010;54:275–89.

    Article  PubMed  Google Scholar 

  12. Patel S, Dawood A, Ford TP, Whaites E. The potential applications of cone beam computed tomography in the management of endodontic problems. Int Endod J. 2007;40:818–30.

    Article  PubMed  Google Scholar 

  13. Goldman M, Pearson AH, Darzenta N. Endodontic success—who’s reading the radiograph. Oral Surg Oral Med Oral Pathol. 1972;33:432–7.

    Article  PubMed  Google Scholar 

  14. Boveda C. Clinical impact of cone beam computed tomography in root canal treatment. In: Basrani B, editor. Endodontic radiology. 2nd ed. Iowa: Wiley-Blackwell; 2012. p. 367–415.

    Google Scholar 

  15. AAE and AAOMR joint position statement in the Use of Cone Beam Computed Tomography in Endodontics - 2015/2016 Update.

    Google Scholar 

  16. Bender B, Seltzer S. Roentgenographic and direct observation of experimental lesions in bone I. J Am Dent Assoc. 1961;62:152–60.

    Article  Google Scholar 

  17. Bender B, Seltzer S. Roentgenographic and direct observation of experimental lesions in bone II. J Am Dent Assoc. 1961;62:708–16.

    Article  Google Scholar 

  18. Rai A, Burde K, Guttal K, Naikmasur VG. Comparison between cone-beam computed tomography and direct digital intraoral imaging for the diagnosis of periapical pathology. J Oral Maxillofac Radiol. 2016;4:50–6.

    Article  Google Scholar 

  19. Lofthag-Hansen S, Huumonen S, Grondahl K, Grondahl H-G. Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:114–9.

    Article  PubMed  Google Scholar 

  20. Friedman S. Prognosis of initial endodontic therapy. Endod Top. 2002;2:59–98.

    Article  Google Scholar 

  21. Friedman S, Abitbol S, Lawrence HP. Treatment outcome in endodontics: the Toronto study. Phase 1: initial treatment. J Endod. 2003;29:787–93.

    Article  PubMed  Google Scholar 

  22. Michetti J, Maret D, Mallet JP, Diemer F. Validation of cone beam computed tomography as a tool to explore root canal anatomy. J Endod. 2010;36:1187–90.

    Article  PubMed  Google Scholar 

  23. Narayana P. Access cavity preparations. In: Schwartz R, Canakapalli V, editors. Best practices in endodontics. A Desk Reference. Batavia, IL: Quintessence; 2015. p. 89–103

    Google Scholar 

  24. European Society of Endodontology. Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int Endod J. 2006;39:921–30.

    Article  Google Scholar 

  25. Patel S, Durack C, Abella F, et al. Cone beam computed tomography in endodontics—a review. Int Endod J. 2015;48:3–15.

    Article  PubMed  Google Scholar 

  26. Karabucak B, Bunes A, Chehoud C, Kohli MR, Setzer F. Prevalence of apical periodontitis in endodontically treated premolars and molars with untreated canal: a cone-beam computed tomography study. J Endod. 2016;42:538–41.

    Article  PubMed  Google Scholar 

  27. Sousa T, Haiter-Neto F, Nascimento EH, Peroni L, Freitas D, Hassan B. Diagnostic accuracy of periapical radiography and cone-beam computed tomography in identifying root canal configuration of human premolars. J Endod. 2017;43:1176–9.

    Article  PubMed  Google Scholar 

  28. Silva EJ, Nejaim Y, Silva AV, Haiter-Neto F, Cohenca N. Evaluation of root canal configuration of mandibular molars in a Brazilian population by using cone-beam computed tomography: an in vivo study. J Endod. 2013;39:849–52.

    Article  PubMed  Google Scholar 

  29. Neelakantan P, Subbarao C, Subbarao CV. Comparative evaluation of modified canal staining and clearing technique, cone-beam computed tomography, peripheral quantitative computed tomography, spiral computed tomography, and plain and contrast medium-enhanced digital radiography in studying root canal morphology. J Endod. 2010;36:1547–51.

    Article  PubMed  Google Scholar 

  30. Blattner TC, George N, Lee CC, et al. Efficacy of cone-beam computed tomography as a modality to accurately identify the presence of second mesiobuccal canals in maxillary first and second molars: a pilot study. J Endod. 2010;36:867–70.

    Article  PubMed  Google Scholar 

  31. Ordinola-Zapata R, Bramante CM, Versiani MA, et al. Comparative accuracy of the clearing technique, CBCT and micro-CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J. 2017;50:90–6.

    Article  PubMed  Google Scholar 

  32. Cleghorn BM, Christie WH, Dong CC. Root and root canal morphology of the human permanent maxillary first molar: a literature review. J Endod. 2006;32:813–21.

    Article  PubMed  Google Scholar 

  33. Martins JNR, Alkhawas MAM, Altaki Z, Bellardini G, Berti L, Boveda C, Chaniotis A, Flynn D, Gonzalez JA, Kottoor J, Marques MS, Monroe A, Ounsi HF, Parashos P, Plotino G, Ragnarsson MF, Aguilar RR, Santiago F, Seedat HC, Vargas W, von Zuben M, Zhang Y, Gu Y, Ginjeira A. Worldwide analyses of maxillary first molar second mesiobuccal prevalence: a multicenter cone-beam computed tomographic study. J Endod. 2018;44:1641–9.

    Article  PubMed  Google Scholar 

  34. Vertucci FJ. Root canal morphology and its relationship to endodontic procedures. Endod Top. 2005;10:3–29.

    Article  Google Scholar 

  35. Trope M, Elfenbein L, Tronstad L. Mandibular premolars with more than one root canal in different race groups. J Endod. 1986;12:343–5.

    Article  PubMed  Google Scholar 

  36. Sert S, Bayirli GS. Evaluation of the root canal configurations of the mandibular and maxillary permanent teeth by gender in the Turkish population. J Endod. 2004;30:391–8.

    Article  PubMed  Google Scholar 

  37. Ruddle C (1998) Inventor applying an organic iodine solution in conjunction with a sodium hypochlorite solution USA. US Patent No. 5,797,745.

    Google Scholar 

  38. Abella F, Patel S, Durán-Sindreu F, Mercadé M, Bueno R, Roig M. An evaluation of the periapical status of teeth with necrotic pulps using periapical radiography and cone-beam computed tomography. Int Endod J. 2014;47:387–96.

    Article  PubMed  Google Scholar 

  39. Inan U, Aydin C, Demirkaya K. Cyclic fatigue resistance of new and used Mtwo rotary nickel-titanium instruments in two different radii of curvature. Aust Endod J. 2011;37:105–8.

    Article  PubMed  Google Scholar 

  40. Gao Y, Cheung GS, Shen Y, Zhou X. Mechanical behavior of ProTaper universal F2 finishing file under various curvature conditions: a finite element analysis study. J Endod. 2011;37:1446–50.

    Article  PubMed  Google Scholar 

  41. Vertucci FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol. 1984;58:589–99.

    Article  PubMed  Google Scholar 

  42. Park PS, Kim KD, Perinpanayagam H, Lee JK, Chang SW, Chung SH, Kaufman B, Zhu Q, Safavi KE, Kum KY. Three-dimensional analysis of root canal curvature and direction of maxillary lateral incisors by using cone-beam computed tomography. J Endod. 2013;39:1124–9.

    Article  PubMed  Google Scholar 

  43. Estrela C, Bueno MR, Sousa-Neto MD, Pécora JD. Method for determination of root curvature radius using cone-beam computed tomography images. Braz Dent J. 2008;19:114–8.

    Article  PubMed  Google Scholar 

  44. Williams CB, Joyce AP, Roberts S. A comparison between in vivo radiographic working length determination and measurement after extraction. J Endod. 2006;32:624–7.

    Article  PubMed  Google Scholar 

  45. ElAyouti A, Weiger R, Löst C. The ability of root ZX apex locator to reduce the frequency of overestimated radiographic working length. J Endod. 2002;28:116–9.

    Article  PubMed  Google Scholar 

  46. ElAyouti A, Weiger R, Löst C. Frequency of over instrumentation with an acceptable radiographic working length. J Endod. 2001;27:49–52.

    Article  PubMed  Google Scholar 

  47. ElAyouti A, Dima E, Ohmer J, et al. Consistency of apex locator function: a clinical study. J Endod. 2009;35:179–81.

    Article  PubMed  Google Scholar 

  48. Pagavino G, Pace R, Baccetti T. A SEM study of in vivo accuracy of the root ZX electronic apex locator. J Endod. 1998;24:438–41.

    Article  PubMed  Google Scholar 

  49. Piasecki L, Carneiro E, da Silva Neto UX, et al. The use of micro-computed tomography to determine the accuracy of electronic apex locators and anatomic variations affecting their precision. J Endod. 2016;42:1263–7.

    Article  PubMed  Google Scholar 

  50. Meder-Cowherd L, Williamson AE, Johnson WT, et al. Apical morphology of the palatal roots of maxillary molars by using micro-computed tomography. J Endod. 2011;37:1162–5.

    Article  PubMed  Google Scholar 

  51. Haffner C, Folwaczny M, Galler K, et al. Accuracy of electronic apex locators in comparison to actual length—an in vivo study. J Dent. 2005;33:619–25.

    Article  PubMed  Google Scholar 

  52. Gordon MP, Chandler NP. Electronic apex locators. Int Endod J. 2004;37:425–37.

    Article  PubMed  Google Scholar 

  53. Shemesh H, Cristescu R, Wesselink PR, et al. The use of cone-beam computed tomography and digital periapical radiographs to diagnose root perforations. J Endod. 2011;37:513–6.

    Article  PubMed  Google Scholar 

  54. Metska ME, Liem VM, Parsa A, Koolstra JH, Wesselink PR, Ozok AR. Cone-beam computed tomographic scans in comparison with periapical radiographs for root canal length measurement: an in situ study. J Endod. 2014;40:1206–9.

    Article  PubMed  Google Scholar 

  55. Zaatar EI, al-Kandari AM, Alhomaidah S, al-Yasin IM. Frequency of endodontic treatment in Kuwait: radiographic evaluation of 846 endodontically treated teeth. J Endod. 1997;23:453–6.

    Article  PubMed  Google Scholar 

  56. England MC Jr, Hartwell GR, Lance JR. Detection and treatment of multiple canals in mandibular premolars. J Endod. 1991;17:174–8.

    Article  PubMed  Google Scholar 

  57. Sun Y, Lu TY, Chen YC, Yang SF. The best radiographic method for determining root canal morphology in mandibular first premolars: a study of Chinese descendants in Taiwan. J Dent Sci. 2016;11:175–81.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cotton TP, Geisler TM, Holden DT, Schwartz SA, Schindler WG. Endodontic applications of cone-beam volumetric tomography. J Endod. 2007;33:1121–32.

    Article  PubMed  Google Scholar 

  59. Bjorndal AM, Skidmore AE. Anatomy and morphology of human teeth. 2nd ed. Iowa City: University of Iowa Press; 1987.

    Google Scholar 

  60. Weine FS, Healey HJ, Gerstein H, et al. Canal configuration in the mesiobuccal root of the maxillary first molar and its endodontic significance. Oral Surg Oral Med Oral Pathol. 1969;28:419–25.

    Article  PubMed  Google Scholar 

  61. Albuquerque D, Kottoor J. Working width, a deserted aspect of Endodontics. Restor Dent Endod. 2015;40:334–5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jou YT, Karabucak B, Levin J, Liu D. Endodontic working width: current concepts and techniques. Dent Clin N Am. 2004;48:323–35.

    Article  PubMed  Google Scholar 

  63. Paqué F, Zehnder M, Marending M. Apical fit of initial K-files in maxillary molars assessed by micro-computed tomography. Int Endod J. 2010;43:328–35.

    Article  PubMed  Google Scholar 

  64. Markvart M, Darvann TA, Larsen P, Dalstra M, Kreiborg S, Bjørndal L. Micro-CT analyses of apical enlargement and molar root canal complexity. Int Endod J. 2012;45:273–81.

    Article  PubMed  Google Scholar 

  65. Peters OA, Arias A, Paqué F. A micro-computed tomographic assessment of root canal preparation with a novel instrument, TRUShape, in mesial roots of mandibular molars. J Endod. 2015;41:1545–50.

    Article  PubMed  Google Scholar 

  66. Paqué F, Ganahl D, Peters OA. Effects of root canal preparation on apical geometry assessed by micro-computed tomography. J Endod. 2009;35:1056–9.

    Article  PubMed  Google Scholar 

  67. Scarfe WC, Farman AG. What is cone-beam CT and how does it work? Dent Clin N Am. 2008;52:707–30.

    Article  PubMed  Google Scholar 

  68. Gluskin AH, Peters CI, Peters OA. Minimally invasive endodontics: challenging prevailing paradigms. Br Dent J. 2014;216:347–53.

    Article  PubMed  Google Scholar 

  69. Boveda C, Kishen A. Contracted endodontic cavities: the foundation for less invasive alternatives in the management of apical periodontitis. Endod Top. 2015;33:169–86.

    Article  Google Scholar 

  70. Connert T, Krug R, Eggmann F, Emsermann I, ElAyouti A, Weiger R, Kühl S, Krastl G. Guided endodontics versus conventional access cavity preparation: a comparative study on substance loss using 3-dimensional-printed teeth. J Endod. 2019;45:327–31.

    Article  PubMed  Google Scholar 

  71. Ahn SY, Kim NH, Kim S, et al. Computer-aided design/computer-aided manufacturing-guided endodontic surgery: guided osteotomy and apex localization in a mandibular molar with a thick buccal bone plate. J Endod. 2018;44:665–70.

    Article  PubMed  Google Scholar 

  72. Nadeau B, Jung D, Vora V. Trends towards conservative endodontic treatment. Oral Health. 2019;109:30–45.

    Google Scholar 

  73. Tabassum S, Raza KF. Failure of endodontic treatment. The usual suspects. Eur J Dent. 2016;10:144–7.

    Article  PubMed  PubMed Central  Google Scholar 

  74. https://www.aao.org/eye-health/tips-prevention/what-does-20-20-vision-mean .

  75. Perrin P, Neuhaus KW, Lussi A. The impact of loupes and microscopes on vision in endodontics. Int Endod J. 2014;47:425–9.

    Article  PubMed  Google Scholar 

  76. Carr G. Microscopes in endodontics. J Calif Dent Assoc. 1992;20:55–61.

    PubMed  Google Scholar 

  77. Kulild JC, Peters DD. Incidence and configuration of canal systems in the mesiobuccal root of maxillary first and second molars. J Endod. 1990;16:311–7.

    Article  PubMed  Google Scholar 

  78. de Carvalho MC, Zuolo ML. Orifice locating with a microscope. J Endod. 2000;26:532–4.

    Article  PubMed  Google Scholar 

  79. Schwarze T, Baethge C, Stecher T, Geurtsen W. Identification of second canals in the mesiobuccal root of maxillary first and second molars using magnifying loupes or an operating microscope. Aust Endod J. 2002;28:57–60.

    Article  PubMed  Google Scholar 

  80. Rampado ME, Tjaderhane L, Friedman S, Hamstra SJ. The benefit of the operating microscope for access cavity preparation by undergraduate students. J Endod. 2004;30:863–7.

    Article  PubMed  Google Scholar 

  81. Buhrley LJ, Barrows MJ, BeGole EA, Wenckus CS. Effect of magnification on locating the MB2 canal in maxillary molars. J Endod. 2002;28:324–7.

    Article  PubMed  Google Scholar 

  82. Karapinar-Kazandag M, Basrani B, Friedman S. The operating microscope enhances detection and negotiation of accessory medial canals in mandibular molars. J Endod. 2010;36:1289–94.

    Article  PubMed  Google Scholar 

  83. Görduysus MÖ, Görduysus M, Friedman S. Operating microscope improves negotiation of second mesiobuccal canals in maxillary molars. J Endod. 2001;27:683–6.

    Article  PubMed  Google Scholar 

  84. Plotino G, Pameijer CH, Grande NM, Somma F. Ultrasonics in endodontics: a review of the literature. J Endod. 2007;33:81–95.

    Article  PubMed  Google Scholar 

  85. Ansar A, Shetty KH. Uses of ultrasonics in endodontics, a review. Int J Adv Res. 2017;6:1448–59.

    Article  Google Scholar 

  86. Lin YH, Mickel AK, Jones JJ, Montagnese TA, Gonzalez AF. Evaluation of cutting efficiency of ultrasonic tips used in orthograde endodontic treatment. J Endod. 2006;32:359–61.

    Article  PubMed  Google Scholar 

  87. Paz E, Satovsky J, Moldauer I. Comparison of the cutting efficiency of two ultrasonic units utilizing two different tips at two different power settings. J Endod. 2005;31:824–6.

    Article  PubMed  Google Scholar 

  88. Waplington M, Lumley PJ, Bunt L. An in vitro investigation into the cutting action of ultrasonic radicular access preparation instruments. Endod Dent Traumatol. 2000;16:158–61.

    Article  PubMed  Google Scholar 

  89. Boutsioukis C, Tzimpoulas NJ. Uncontrolled removal of dentin during in vitro ultrasonic irrigant activation. J Endod. 2016;42:289–93.

    Article  PubMed  Google Scholar 

  90. Gu Y, Kum KY, Perinpanayagam H, Kim C, Kum DJ, Lim SM, Chang SW, Baek SH, Zhu Q, Yoo YJ. Various heat-treated nickel–titanium rotary instruments evaluated in S-shaped simulated resin canals. J Dent Sci. 2017;12:14–20.

    Article  PubMed  Google Scholar 

  91. Walton RE. Current concepts of canal preparation. Dent Clin N Am. 1992;36:309–26.

    Article  PubMed  Google Scholar 

  92. Wu MK, Vander Sluis LW, Wesselink PR. The risk of furcal perforation in mandibular molars using Gates-Glidden drips with anticurvature pressure. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:378–82.

    Article  PubMed  Google Scholar 

  93. Ossareh A, Kishen A. Effect of endodontic chemicals on the ultrastructure, chemical and mechanical characteristics of dentin hard tissue. J Endod. 2014;40:6.

    Google Scholar 

  94. Eaton JA, Clement DJ, Lloyd A, Marchesan MA. Micro-computed tomographic evaluation of the influence of root canal system landmarks on access outline forms and canal curvatures in mandibular molars. J Endod. 2015;41:1888–91.

    Article  PubMed  Google Scholar 

  95. Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of nickel-titanium rotary instruments. J Endod. 2009;35:1469–76.

    Article  PubMed  Google Scholar 

  96. Bhagabati N, Yadav S, Talwar S. An in vitro cyclic fatigue analysis of different endodontic nickel-titanium rotary instruments. J Endod. 2012;38:515–8.

    Article  PubMed  Google Scholar 

  97. Hayashi Y, Yoneyama T, Yahata Y, et al. Phase transformation behaviour and bending properties of hybrid nickel-titanium rotary endodontic instruments. Int Endod J. 2007;40:247–53.

    Article  PubMed  Google Scholar 

  98. Yahata Y, Yoneyama T, Hayashi Y, et al. Effect of heat treatment on transformation temperatures and bending properties of nickel-titanium endodontic instruments. Int Endod J. 2009;42:621–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bóveda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bóveda, C., Kishen, A. (2021). The Role of Modern Technologies for Dentin Preservation in Root Canal Treatment. In: Plotino, G. (eds) Minimally Invasive Approaches in Endodontic Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-45866-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45866-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45865-2

  • Online ISBN: 978-3-030-45866-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics