Skip to main content

Exaptation in Physics and Materials Science

  • Chapter
  • First Online:
Understanding Innovation Through Exaptation

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

The biological theory of evolution has been used as a powerful analogy for the history of technological innovation. Here, we discuss how the concept of exaptation, which in the context of evolutionary biology describes the advantageous exploitation of existing traits for completely new functions, can be used to better understand what drives scientific progress in theoretical physics and materials science. The rapidly growing field of automatic materials discovery provides excellent examples of both adaptation and exaptation. Finally, we discuss how basic mechanisms resulting from long-term evolutionary histories—based both on adaptation and exaptation—can now be exploited to design new functional bio-inspired materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenberg J, Weaver JC, Thanawala MS, Sundar VC, Morse DE, Fratzl P (2005) Skeleton of euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309(5732):275–278

    Google Scholar 

  • Andriani P, Cattani G (2016) Exaptation as source of creativity, innovation, and diversity: introduction to the special section. Ind Corp Change 25(1):115–131

    Article  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685

    Article  ADS  Google Scholar 

  • Bogoliubov NN, Shirkov DV (1955) Application of the renormalization group to improve the formulae of perturbation theory. Doklady AN SSSR 103:391–394

    Google Scholar 

  • Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S (2007) Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318(5848):251–254

    Article  ADS  Google Scholar 

  • Curtarolo S, Hart GLW, Nardelli MB, Mingo N, Sanvito S, Levy O (2013) The high-throughput highway to computational materials design. Nat Mater 12(3):191–201

    Article  ADS  Google Scholar 

  • Dimas LS, Bratzel GH, Eylon I, Buehler MJ (2013) Tough composites inspired by mineralized natural materials: computation, 3d printing, and testing. Adv Funct Mater 23(36):4629–4638

    Article  Google Scholar 

  • Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14(24):1857–1860

    Article  Google Scholar 

  • Yoël Forterre, Skotheim JM, Dumais J, Mahadevan L (2005) How the venus flytrap snaps. Nature 433(7024):421–5

    Article  ADS  Google Scholar 

  • Fratzl P (2007) Biomimetic materials research: what can we really learn from nature’s structural materials? J Royal Soc Interface 4(15):637–642

    Article  Google Scholar 

  • Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2(7):461–463

    Article  ADS  Google Scholar 

  • Gell-Mann M, Low FE (1954) Quantum electrodynamics at small distances. Phys Rev 95(5):1300

    Article  ADS  MathSciNet  Google Scholar 

  • Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201):1153–1158

    Article  ADS  Google Scholar 

  • Gould SJ, Vrba ES (1982) Exaptation—a missing term in the science of form. Paleobiology 8(1):4–15

    Google Scholar 

  • Hamza S, Slimane N, Azari Z, Pluvinage G (2013) Structural and mechanical properties of the coral and nacre and the potentiality of their use as bone substitutes. Appl Surf Sci 264:485–491

    Article  ADS  Google Scholar 

  • Higgs PW (1964) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13(16):508

    Article  ADS  MathSciNet  Google Scholar 

  • Kadanoff LP (1966) Scaling laws for ising models near t c. Phys Physique Fizika 2(6):263

    Article  MathSciNet  Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. Chicago and London

    Google Scholar 

  • La Porta CAM, Lionetti MC, Bonfanti S, Milan S, Ferrario C, Rayneau-Kirkhope D, Beretta M, Hanifpour M, Fascio U, Ascagni M et al (2019) Metamaterial architecture from a self-shaping carnivorous plant. Proc Natl Acad Sci 116(38):18777–18782

    Article  ADS  Google Scholar 

  • Larson G, Stephens PA, Tehrani JJ, Layton RH (2013) Exapting exaptation. Trends Ecol Evol 28(9):497–498

    Article  Google Scholar 

  • Launey ME, Ritchie RO (2009) On the fracture toughness of advanced materials. Adv Mater 21(20):2103–2110

    Article  Google Scholar 

  • Lenau T, Barfoed M (2008) Colours and metallic sheen in beetle shells-a biomimetic search for material structuring principles causing light interference. Adv Eng Mater 10(4):299–314

    Article  ADS  Google Scholar 

  • McFarland EW, Weinberg WH (1999) Combinatorial approaches to materials discovery. Trends Biotechnol 17(3):107–115

    Article  Google Scholar 

  • Overvelde JTB, Kloek T, D’haen JJA, Bertoldi K (2015) Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc Natl Acad Sci U S A 112(35):10863–8, Sep 2015

    Google Scholar 

  • Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder GJ, Harnwunggmoung A, Sugahara T, Ohishi Y et al (2012) Chalcopyrite cugate2: a high-efficiency bulk thermoelectric material. Adv Mater 24(27):3622–3626

    Article  Google Scholar 

  • Qin Z, Dimas L, Adler D, Bratzel G (2014) Buehler MJ (2014) Biological materials by design. J Phys Condens Matter 26(7):073101

    Article  Google Scholar 

  • Raccuglia P, Elbert KC, Adler PDF, Falk C, Wenny MB, Mollo A, Zeller M, Friedler SA, Schrier J, Norquist AJ (2016) Machine-learning-assisted materials discovery using failed experiments. Nature 533(7601):73

    Article  ADS  Google Scholar 

  • Rafsanjani A, Bertoldi K (2017) Buckling-induced kirigami. Phys Rev Lett 118(8):084301

    Article  ADS  Google Scholar 

  • Reibold M, Paufler P, Levin AA, Kochmann W, Pätzke N, Meyer DC (2006) Carbon nanotubes in an ancient damascus sabre. Nature 444(7117):286–286

    Article  ADS  Google Scholar 

  • Stuckelberg E, Petermann A (1953) La normalisation des constantes dans la theorie des quanta. Helv Phys Acta 26:499–520

    MathSciNet  MATH  Google Scholar 

  • Studart AR (2015) Biologically inspired dynamic material systems. Angewandte Chemie Int Edn 54(11):3400–3416

    Article  Google Scholar 

  • Tshitoyan V, Dagdelen J, Weston L, Dunn A, Rong Z, Kononova O, Persson KA, Ceder G, Jain A (2019) Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571(7763):95–98

    Article  ADS  Google Scholar 

  • Vincent JFV (2005) Deconstructing the design of a biological material. J Theor Biol 236(1):73–78

    Article  Google Scholar 

  • Weaver JC, Milliron GW, Miserez A, Evans-Lutterodt K, Herrera S, Gallana I, Mershon WJ, Swanson B, Zavattieri P, DiMasi E et al (2012) The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336(6086):1275–1280

    Article  ADS  Google Scholar 

  • Wilson KG (1971) Renormalization group and critical phenomena. i. Renormalization group and the kadanoff scaling picture. Phys Rev B 4(9):3174

    Google Scholar 

  • Witten E (2016) Phil anderson and gauge symmetry breaking. In Pwa90: a lifetime of emergence, pp 73–89. World Scientific

    Google Scholar 

  • Xie P, Yao Y, Huang Z, Liu Z, Zhang J, Li T, Wang G, Shahbazian-Yassar R, Liangbing H, Wang C (2019) Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nature Commun 10(1):1–12

    Article  Google Scholar 

  • Zaiser M (2007) Nikitas N (2007) Slip avalanches in crystal plasticity: scaling of the avalanche cut-off. J Stat Mechs: Theory Exp 04:P04013

    MATH  Google Scholar 

  • Zapperi S, Cizeau P, Durin G, Stanley HE (1998) Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the barkhausen effect. Phys Rev B 58(10):6353

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Alexander von Humboldt Foundation through the Humboldt Research Award. SZ thanks for hospitality the Friedrich-Alexander-Universität Erlangen-Nürnberg where this chapter has been written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zapperi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaiser, M., Zapperi, S. (2020). Exaptation in Physics and Materials Science. In: La Porta, C., Zapperi, S., Pilotti, L. (eds) Understanding Innovation Through Exaptation. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-030-45784-6_3

Download citation

Publish with us

Policies and ethics