Skip to main content

Flexible Graph Connectivity

Approximating Network Design Problems Between 1- and 2-Connectivity

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12125))

  • 1252 Accesses

Abstract

Graph connectivity and network design problems are among the most fundamental problems in combinatorial optimization. The minimum spanning tree problem, the two edge-connected spanning subgraph problem (\(2\) -ECSS) and the tree augmentation problem (WTAP) are all examples of fundamental well-studied network design tasks that postulate different initial states of the network and different assumptions on the reliability of network components. In this paper we motivate and study Flexible Graph Connectivity (FGC), a problem that mixes together both the modeling power and the complexities of all aforementioned problems and more. In a nutshell, FGC asks to design a connected network, while allowing to specify different reliability levels for individual edges.

In this paper we develop a general algorithmic approach for approximating FGC that yields approximation algorithms with ratios that are close to the known best bounds for many special cases, such as \(2\) -ECSS and WTAP. Our algorithm and analysis combine various techniques including a weight-scaling algorithm, a charging argument that uses a variant of exchange bijections between spanning trees and a factor revealing min-max-min optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adjiashvili, D.: Beating approximation factor two for weighted tree augmentation with bounded costs. ACM Trans. Alg. (TALG) 15(2), 19 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Adjiashvili, D., Bosio, S., Weismantel, R., Zenklusen, R.: Time-expanded packings. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 64–76. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_6

    Chapter  Google Scholar 

  3. Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M.: Flexible graph connectivity (2019). https://arxiv.org/abs/1910.13297

  4. Adjiashvili, D., Stiller, S., Zenklusen, R.: Bulk-robust combinatorial optimization. Math. Program. 149(1–2), 361–390 (2015). https://doi.org/10.1007/s10107-014-0760-6

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrka, J., Grandoni, F., Ameli, A.J.: Breaching the 2-approximation barrier for connectivity augmentation: a reduction to Steiner tree (2019). https://arxiv.org/abs/1911.02259

  6. Cheriyan, J., Dippel, J., Grandoni, F., Khan, A., Narayan, V.: The matching augmentation problem: a \(\frac{7}{4}\)-approximation algorithm. Math. Program. (2019). https://doi.org/10.1007/s10107-019-01394-z

  7. Dinits, E., Karzanov, A., Lomonosov, M.: On the structure of a family of minimal weighted cuts in a graph. Studies in Discrete Optimization, pp. 290–306 (1976)

    Google Scholar 

  8. Fiorini, S., Groß, M., Könemann, J., Sanità, L.: Approximating weighted tree augmentation via Chvátal-gomory cuts. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA 2018, pp. 817–831. Society for Industrial and Applied Mathematics (2018)

    Google Scholar 

  9. Frederickson, G.N., JáJá, J.: Approximation algorithms for several graph augmentation problems. SIAM J. Comput. 10(2), 270–283 (1981). https://doi.org/10.1137/0210019

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabow, H.N., Gallagher, S.R.: Iterated rounding algorithms for the smallest \(k\)-edge connected spanning subgraph. SIAM J. Comput. 41(1), 61–103 (2012)

    Article  MathSciNet  Google Scholar 

  11. Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approximating the smallest \(k\)-edge connected spanning subgraph by LP-rounding. Networks 53(4), 345–357 (2009). https://doi.org/10.1002/net.20289

    Article  MathSciNet  MATH  Google Scholar 

  12. Gálvez, W., Grandoni, F., Ameli, A.J., Sornat, K.: On the cycle augmentation problem: hardness and approximation algorithms. In: Bampis, E., Megow, N. (eds.) WAOA 2019. LNCS, vol. 11926, pp. 138–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39479-0_10

    Chapter  Google Scholar 

  13. Goemans, M.X., Goldberg, A.V., Plotkin, S.A., Shmoys, D.B., Tardos, É., Williamson, D.P.: Improved approximation algorithms for network design problems. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 223–232 (1994)

    Google Scholar 

  14. Grandoni, F., Kalaitzis, C., Zenklusen, R.: Improved approximation for tree augmentation: saving by rewiring. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing. STOC 2018, pp. 632–645. ACM, New York (2018). https://doi.org/10.1145/3188745.3188898

  15. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001). https://doi.org/10.1007/s004930170004

    Article  MathSciNet  MATH  Google Scholar 

  16. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50(6), 795–824 (2003). https://doi.org/10.1145/950620.950621

    Article  MathSciNet  MATH  Google Scholar 

  17. Kortsarz, G., Nutov, Z.: A simplified 1.5-approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms 12(2), 23 (2016). https://doi.org/10.1145/2786981

    Article  MathSciNet  MATH  Google Scholar 

  18. Kortsarz, G., Nutov, Z.: LP-relaxations for tree augmentation. Discrete Appl. Math. 239, 94–105 (2018). https://doi.org/10.1016/j.dam.2017.12.033

    Article  MathSciNet  MATH  Google Scholar 

  19. Nutov, Z.: On the tree augmentation problem. In: 25th Annual European Symposium on Algorithms (ESA 2017), vol. 87, p. 61. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  20. Sebő, A., Vygen, J.: Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34(5), 597–629 (2014). https://doi.org/10.1007/s00493-014-2960-3

    Article  MathSciNet  MATH  Google Scholar 

  21. The Optimization Firm: Baron (2019). https://minlp.com/baron

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Hommelsheim .

Editor information

Editors and Affiliations

A Proof Sketch of Theorem 1

A Proof Sketch of Theorem 1

In this section we give a sketch of an analytic upper bound of \(2.523 \) on the approximation ratio of Algorithm 1. For this purpose it suffices to only consider Algorithms A and C. That is, using \(\alpha \)-monotone exchange bijections from Sect. 2, we determine functions \(f^A(\cdot )\) and \(f^C(\cdot )\) for the optimization problem (2), where \(f^C(\cdot )\) depends on a selection of scaling factors and some other parameters to be introduced shortly. Recall that according to Lemma 1, the selection of scaling factors in Algorithm 1 is optimal. Surprisingly, a worst-case instance for our bounds \(f^A(\cdot )\) and \(f^C(\cdot )\) in fact has a single threshold value which is \(1/\lambda \). However, to obtain the approximation ratio of \(2.523 \) it is crucial to execute Algorithm 1 with all threshold values of the given instance.

Let \(\mathcal {I}(N)\) be a class of instances of FGC with at most N threshold values (see Definition 1). In the following, suppose that \(I \in \mathcal {I}(N)\) and recall that an optimal solution \(Z^* \subseteq E(G)\) of \(I \) consists of r 2-edge-connected components \(C_1, C_2, \ldots , C_r\) that are joined together by safe edges \(E':= \{ \overline{f}_1, \overline{f}_2, \ldots , \overline{f}_{r-1} \} \subseteq \overline{F}\) in a tree-like fashion. Moreover, for any spanning tree \(T \subseteq Z^*\) we have \(E'\subseteq T\).

Observe that since there is an unsafe edge for each safe edge of same weight in G, we have that each threshold value is in [0, 1]. Let \(0 \le \alpha _1 \le \alpha _2 \le \ldots \le \alpha _{N} \le 1\) be the N threshold values of I in non-decreasing order. In order to prepare our analysis, we consider for \(i \in \{1, 2, \ldots , N\}\) an \(\alpha _i\)-MST \(T_i\), an \(\alpha _i\)-monotone exchange bijection \(\varphi _i: T_i \rightarrow T\) (which exist due to Lemma 3) and a weight function \(w_i := w_{\alpha _i}\). For \(2 \le i \le N\) we choose \(\varphi _i\) such that for each \(e \in E(T_{i-1}) \cap E(T_i)\) we have \(\varphi _{i-1}(e) = \varphi _i(e)\). This can be done due to Corollary 12 in [3]. In order to define the parameters of the optimization problem (2), for \(1 \le i \le N\), we partition the edge set of the \(\alpha _i\)-MST \(T_i\) into four parts \(D_i\), \(O_i\), \(F_i\), and \(S_i\) as follows.

  • \(D_i := \{ e \in E(T_i) \cap F \mid \varphi _i(e) \in E' \}\)

  • \(O_i := \{ e \in E(T_i) \cap \overline{F} \mid \varphi _i(e) \in E' \}\)

  • \(F_i := \{ e \in E(T_i) \cap F \mid \varphi _i(e) \in E(T) \setminus E' \}\)

  • \(S_i := \{ e \in E(T_i) \cap \overline{F} \mid \varphi _i(e) \in E(T) \setminus E' \}\)

The parameters of (2) are given as follows. For \(1 \le i \le N\) we let \(E^{\bar{F}}_i\) (resp., \(E^F_i\)) be the set of edges in \(E'\) (resp., \(E(T) - E'\)) that have threshold value \(\alpha _i\). That is, \(E^{\bar{F}}_i := \{ e \in E'\mid \alpha _e = \alpha _i \}\) and \(E^F_i := \{ e \in E(T) - E'\mid \alpha _e = \alpha _i \}\). For \(1 \le i \le N\) we let \(\beta _i = w(E^{\bar{F}}_i)/{\text {OPT}(I)}\) and \(\gamma _i = w(E^F_i) /{\text {OPT}(I)}\) be the fraction of the weight of the optimal solution that is contributed by the edges in \(E^{\bar{F}}_i\) (resp., \(E^F_i\)). Finally, let \(\xi \in [0, 1]\) be the the fraction of the weight of the optimal solution that does not correspond to the tree T; i.e., \(\xi := \frac{w(Z^*) - w(T)}{\text {OPT}(I)}\). The following properties of \(\beta _i\), \(\gamma _i\), \(1 \le i \le N\), are readily verified:

  1. 1.

    \(\beta _1, \beta _2, \ldots \beta _{N}, \gamma _1, \gamma _2, \ldots \gamma _{N}, \xi \in [0, 1]\),

  2. 2.

    \(\sum _{j=1}^{N} \beta _j = \frac{w(E')}{\text {OPT}(I)}\),

  3. 3.

    \(\sum _{j=1}^{N} \gamma _j = \frac{w(T - E')}{\text {OPT}(I)}\) and

  4. 4.

    \(\xi = 1 - \sum _{j = 1}^{N} \beta _j - \sum _{j=1}^{N} \gamma _j\).

We now bound the cost of the solutions \(Z_i^C\) and \(Z^A\) returned by Algorithm C (resp., Algorithm A) in terms of the parameters.

Lemma 4

Suppose we run Algorithm 1 with the optimal threshold values \(W = \{ \alpha _i \}_{1 \le i \le N}\). Let \(Z_i^C\) be the solution to the instance \((G, w_i, \overline{F})\) of FGC computed by Algorithm C in Algorithm 1. Then

$$\begin{aligned}&w(Z_i^C) \le \left( 1 + \sum _{j = 1}^{i-1} (\lambda -1 + \lambda \alpha _{j}) \beta _j + (\lambda -1) \cdot \sum _{j=1}^{N} \gamma _j + \sum _{j=i}^{N} \frac{\gamma _j}{\alpha _j} \right) \cdot \mathrm{OPT}(I).\end{aligned}$$

Lemma 5

Suppose we run Algorithm 1 with the optimal threshold values \(W = \{ \alpha _i \}_{1 \le i \le N}\). Let \(Z^A\) be the solution to the instance \((G, w, \overline{F})\) of FGC computed by Algorithm A in Algorithm 1. Then

$$\begin{aligned} w(Z^A) \le \left( \lambda + \lambda \cdot \sum _{j = 1}^{N} \alpha _{j} \beta _j \right) \cdot \mathrm{OPT}(I).\end{aligned}$$

With the bounds from Lemmas 4 and 5 and by applying standard techniques we can simplify problem (2) to

$$\begin{aligned} \begin{aligned} \max \;&\lambda \cdot \left( 1 + \sum _{j=1}^{N} \alpha _j \hat{\beta _j} \right) \\ \text {subject to }&\sum _{j=1}^{N} \hat{\beta _j} \cdot (1 + \alpha _j (\lambda - 1 + \lambda \alpha _j) ) = 1,\\&0 \le \alpha _1 \le \alpha _2 \le \ldots \le \alpha _N \le 1,\\&\hat{\beta _j} \in [0, 1] \text { for all } j \in \{1, \ldots , N \}. \end{aligned} \end{aligned}$$
(3)

Theorem 3

The approximation guarantee of Algorithm 1 for instances with at most N threshold values is upper bounded by the optimal value of optimization problem (3).

We solve Problem (3) analytically and observe that the optimal value does not depend on N. Hence we obtain the claimed approximation ratio of 2.523 for \(\lambda = 2\).

Theorem 4

Algorithm 1 has an approximation guarantee of \(\frac{\lambda \cdot (\lambda + 2 \sqrt{\lambda })}{2\sqrt{\lambda } + \lambda -1}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M. (2020). Flexible Graph Connectivity. In: Bienstock, D., Zambelli, G. (eds) Integer Programming and Combinatorial Optimization. IPCO 2020. Lecture Notes in Computer Science(), vol 12125. Springer, Cham. https://doi.org/10.1007/978-3-030-45771-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45771-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45770-9

  • Online ISBN: 978-3-030-45771-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics