Skip to main content

Basic Concepts of Microwave Radiometry

  • Chapter
  • First Online:
Microwave Remote Sensing Tools in Environmental Science

Abstract

Super High Frequency (SHF) radiometry began to develop in the 1950s mainly in the former Soviet Union and the United States, with the aim of studying the emission of natural and anthropogenic objects in all weather conditions, the composition of radio-landscapes maps, the development of the recognition methodology for the land and water surfaces and on their basis the application of the radio-landscape navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anaokar GS, Khambete AK (2016) Application of fuzzi logic in environmental engineering for determination of air quality index. Int J Eng Technol Manag Appl Sci 4(2):110–115

    Google Scholar 

  • Andreas AM, Wilcox SM (2016) Radiometer calibration and characterization (RCC) user’s manual. Technical report NREL/TP-3B10-65844, National Renewable Energy Laboratory, Golden, USA

    Google Scholar 

  • Asrar G, Dozier J (1994) EOS: science strategy for the earth observing system. AIP Press, Woodbury

    Google Scholar 

  • Battaglia A, Simmer C (2007) Explaining the polarization signal from rain dichroic effects. J Quant Spectrosc Radiat Transf 105(1):84–101

    Article  Google Scholar 

  • Brogioni M, Macelloni G, Palchetti E, Crepaz A (2009) Monitoring snow characteristics with ground-based multifrequency microwave radiometry. IEEE Trans Geosci Remote 47(11):3643–3655

    Article  Google Scholar 

  • Butt MJ (2004) Microwave snow emission model and its contributing parameters. J Res (Sci) Bahauddin Zakariya University, Multan, Pakistan 15(2):113–121

    Google Scholar 

  • Camps A, Tarongí JM (2010) Microwave radiometer resolution optimization using variable observation times. Remote Sens 2:1826–1843

    Article  Google Scholar 

  • Carcolé E, Ugalde A (2008) Formulation of the multiple anisotropic scattering process in two dimensions for anisotropic source radiation. Geophys J Int 174(3):1037–1051

    Article  Google Scholar 

  • Che T, Li X, Jin R, Armstrong R, Tingjun Zhang T (2008) Snow depth derived from passive microwave remote-sensing data in China. Ann Glaciol 49:145–154

    Article  Google Scholar 

  • Chen C-T, Tsang L, Guo J, Chang ATC, Ding K-H (2003) Frequency dependence of scattering and extinction of dense media based on three-dimensional simulations of Maxwell’s equations with applications to snow. IEEE Trans Geosci Remote 41(8):1844–1852

    Article  Google Scholar 

  • Choudhury BJ, Kerr YH, Njoku EG, Pampaloni P (eds) (1995) Land-atmosphere interactions. Utrecht

    Google Scholar 

  • Chukhlantsev AA (2006) Microwave radiometry of vegetation canopies. Springer, Berlin

    Google Scholar 

  • Clifford D (2010) Global estimates of snow water equivalent from passive microwave instruments: history, challenges and future developments. Int J Remote Sen 31(14):3707–3726

    Article  Google Scholar 

  • Cookmartin G, Saich P, Quegan S, Corday R, Burgess-Allen P, Sowter A (2000) Modeling microwave interactions with crops and comparison with ERS-2 SAR observations. IEEE Trans Geosci Remote 38(2):658–670

    Article  Google Scholar 

  • Cracknell AP, Krapivin VF, Varotsos CA (eds) (2009) Global climatology and ecodynamics: anthropogenic changes to planet earth. Springer/Praxis, Chichester

    Google Scholar 

  • Dai L, Che T, Ding Y, Hao X (2017) Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing. Cryosphere 11:1933–1948

    Article  Google Scholar 

  • Del Frate F, Ferrazzoli P, Schiavon G (2003) Retriveing soil moisture and agricultural variables by microwave radiometry using neural networks. Proc SPIE 84(2):174–183

    Google Scholar 

  • Derksen C, Toose P, Lemmetyinen J, Pulliainen J, Langlois A, Rutter N, Fuller MC (2012) Evaluation of passive microwave brightness temperature simulations and snow water equivalent retrievals through a winter season. Proc SPIE 117:236–248

    Google Scholar 

  • DeWitt DP, Nutter GD (eds) (1988) Theory and practice of radiation thermometry. Wiley, New York

    Google Scholar 

  • Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Proc SPIE 84(3):393–410

    Google Scholar 

  • Dong J, Walker JP, Houser PR, Sun C (2007) Scanning multichannel microwave radiometer snow water equivalent assimilation. J Geophys Res 112(D07108):1–16

    Google Scholar 

  • Engman ET, Chauhan N (1995) Status of microwave soil moisture measurements with remote sensing. Proc rSPIE 51(1):189–198

    Google Scholar 

  • Fang H, Liang S (2003) Retrieving leaf area index with a neural network method: simulation and validation. IEEE Trans Geosci Remote 41(9):2052–2062

    Article  Google Scholar 

  • Ferrazzoli P, Paloscia S, Pampaloni P, Schiavon G, Solimini D, Coppo P (1992) Sensitivity of microwave measurements to vegetation biomass and soil moisture content: a case study. IEEE Trans Geosci Remote 30(4):750–756

    Article  Google Scholar 

  • Fieuzal R, Baup F, Marais-Sicre C (2013) Monitoring wheat and rapeseed by using synchronous optical and radar satellite data—from temporal signatures to crop parameters estimation. ARS 2:162–180

    Article  Google Scholar 

  • Friedi MA, Mclver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Proc SPIE 83(1–2):287–302

    Google Scholar 

  • Frolov AD, Macheret YY (1999) On dielectric properties of dry and wet snow. Hydrol Proc 13(12–13):1755–1760

    Article  Google Scholar 

  • Fujita S, Matsuoka T, Ishida T, Matsuoka K, Mae S (2000) A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In: Hondoh T (ed) Physics of ice core records. Hokkaido University Press, Sapporo, pp 185–212

    Google Scholar 

  • Givant S, Halmos P (2009) Introduction to Boolean algebras. Undergraduate texts in mathematics, XIV. Springer, Berlin

    Google Scholar 

  • Haarbrink R, Krapivin VF, Krisilov A, Krisilov V, Novichikhin EP, Shutko AM, Sidorov I (2011) Intelligent data processing in global monitoring and security. ITHEA, Sofia-Kiev

    Google Scholar 

  • Hallikainen MT, Ulaby FT, Abdelrazik M (1986) Dielectric properties of snow in the 3 to 37 GHz range. IEEE Trans Antennas Propag 34(11):1329–1340

    Article  Google Scholar 

  • Hofer R, Mätzler C (1980) Investigation of snow parameters by radiometry in the 3- to 60-mm wavelength region. J Geophys Res 85:453–460

    Article  Google Scholar 

  • Jackson TJ, Hsu AY, Shutko A, Tishchenko Y, Petrenko B, Kutuza B, Armand N (2002) Priroda microwave radiometer observations in the southern Great Plains 1997 hydrology experiment. Int J Remote Sensing 23(2):231–248

    Article  Google Scholar 

  • Janssen MA (ed) (1993) Atmospheric remote sensing by microwave radiometry. Wiley, New York

    Google Scholar 

  • Kelly REJ, Chang ATC (2003) Development of a passive microwave global snow depth retrieval algorithm for Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR-E) data. Radio Sci 38(4): 41-1–41-11

    Google Scholar 

  • Koike T (1993) Passive-microwave remote sensing of snow. Ann Glaciol 18:305–308

    Article  Google Scholar 

  • Kondratyev KY, Krapivin VF, Savinykh VP, Varotsos CA (2004) Global ecodynamics: a multidimensional analysis. Springer-Praxis, Chichester

    Book  Google Scholar 

  • Krapivin VF, Shutko AM (1989) Observation and prognosis of the state of environmental resources, ecological and meteorological situations by geoinformational monitoring system. Proceedings of the Fourth Int. Symposium on Okhotsk Sea & Sea Ice. (February 5–7, 1989, Mombetsu, Japan). Okhotsk Sea & Cold Ocean Res Assoc, Mombetsu, Japan, p 1–5.

    Google Scholar 

  • Krapivin VF, Shutko AM (2002) Investigations in the field of microwave monitoring of land covers. Probl Environ Nat Resour 4:44–53. [in Russian]

    Google Scholar 

  • Krapivin VF, Shutko AM (2012) Information technologies for remote monitoring of the environment. Springer/Praxis, Chichester

    Book  Google Scholar 

  • Krapivin VF, Shutko AM, Chukhlantsev AA, Golovachev SP, Phillips GW (2006) GIMS-based method vegetation microwave monitoring. Environ Model Softw 21:330–345

    Article  Google Scholar 

  • Krapivin VF, Varotsos CA, Soldatov VY (2015) New ecoinformatics tools in environmental science: applications and decision-making. Springer, London

    Book  Google Scholar 

  • Krapivin VF, Nitu C, Varotsos CA (2019) Microwave remote sensing tools and ecoinformatics. Matrix Rom, Bucharest

    Google Scholar 

  • Küchler N, Turner DD, Löhnert U, Crewell S (2016) Calibrating ground-based microwave radiometers: uncertainty and drifts. Radio Sci 51(4):311–327

    Article  Google Scholar 

  • Kutuza BG, Zagorin G, Hornbostel A, Schroth A (1998) Physical modeling of passive polarimetric microwave observations of the atmosphere with respect to the third Stokes parameter. Radio Sci 33(3):677–695

    Article  Google Scholar 

  • Kutuza BG, Shutko A, Plushchev V, Ramsey E, Logan B, DeLoach S., Haldin A, Novichikhin E, Sidorov I, Manakov V, Nelson G (2000) Advantages of Synchronous Multi-Spectral SAR and Microwave Radiometric Observations of Land Covers from Aircraft Platforms. Proceedings of the EUSAR'2000, 3rd European Conference on Synthetic Aperture Radar, 23–25 May 2000, Munich, Germany, p 663–666.

    Google Scholar 

  • Langlois A, Barber DG, Hwang BJ (2007) Development of a winter snow water equivalent algorithm using in situ passive microwave radiometry over snow-covered first-year sea ice. Proc SPIE 106:75–88

    Google Scholar 

  • Lemmetyinen J, Derksen C, Rott H, Macelloni G, King J, Schneebeli M, Pulliainen J (2018) Retrieval of effective correlation length and snow water equivalent from radar and passive microwave measurements. Remote Sens 10(2):170–198

    Article  Google Scholar 

  • Liu Y, Li L, Yang J, Chen X, Hao J (2017) Estimating snow depth using multi-source data fusion based on the D-InSAR method and 3DVAR fusion algorithm. Remote Sens 9(1195):1–17

    Google Scholar 

  • Lopez-Iturri P, de Miguel-Bilbao S, Aquirre E, Azpilicueta L, Falcone F, Ramos V (2015) Estimation of radiofrequency power leakage from microwave ovens for dosimetric assessment at nonionizing radiation explosure levels. BioMed Res Int, Article ID 603260, 14 pp

    Google Scholar 

  • Macelloni G, Paloscia S, Pampaloni P, Tedesco M (2001) Microwave emission from dry snow: a comparison of experimental and model results. IEEE Trans Geosci Remote Sens 39(12):2449–2656

    Article  Google Scholar 

  • Mätzler C, Murk A (2010) Complex dielectric constant of dry sand in the 0.1 to 2 GHz range. Research report no. 2010-06-MW, Institut für Angewandte Physik, Bern

    Google Scholar 

  • Meier MF (1980) Remote sensing of snow and ice. Hydrol Sci Bull 25(3):307–330

    Article  Google Scholar 

  • Mickelsen AD (1971) Measurement of soil moisture by attenuation of a vertically polarized radio wave. Utah State University, Logan

    Google Scholar 

  • Migliaccio M, Gambardella A (2005) Microwave radiometer spatial resolution enhancement. IEEE Trans Geosci Remote 43(5):1159–1169

    Article  Google Scholar 

  • Monjardin H, Covarrubias DH, Nuñez RF (2009) A new proposal Capon beamformer for angular spreads on distributed sources in a cellular environment. Prog Electromagn Res C (6):167–177

    Google Scholar 

  • Nitu C, Krapivin VF, Soldatov VY (2013) Information-modeling technology for environmental investigations. Matrix ROM, Bucharest

    Google Scholar 

  • Pampaloni P (2004) Microwave radiometry of forests. Waves in Random Media 14:S275–S298

    Article  Google Scholar 

  • Park H, Choi J, Katkovnik V, Kim Y (2004) Interferometric microwave radiometers for high-resolution imaging of the atmosphere brightness temperature based on the adaptive Capon signal processing algorithm. Environ Monit Assess 92(1–3):59–72

    Article  Google Scholar 

  • Prigent C, Aires F, Rossow WB (2006) Land surface microwave emissivities over the globe for a decsde. American Meteorological Society, BAMS, pp 1573–1584. https://doi.org/10.1175/BAMS-87-11-1573

  • Proksch M, Mätzler C, Wiesmann A, Lemmetyinen J, Schwank M, Löwe H, Schneebeli M (2015) MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering. Geosci Model Dev 8:2611–2626

    Article  Google Scholar 

  • Pulliainen JT, Grandell J, Hallikainen M (1999) HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans Geosci Remote Sens 37:1378–1390

    Article  Google Scholar 

  • Pulliainen J (2006) Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Proc SPIE 101:257–269

    Google Scholar 

  • Schwank M, Rautiainen K, Mätzler C, Stähli M, Lemmetyinen J, Pulliainen J, Vehviläinen J, Kontu A, Ikonen J, Ménard CB, Drusch M, Wiesmann A, Wegmüller U (2014) Model for microwave emission of a snow-covered ground with focus on L band. Proc SPIE 154:180–191

    Google Scholar 

  • Shi XK, Wen J, Wang L, Zhang TT, Tian H, Wang X, Liu R, Zhang JH (2009) Application of satellite microwave remote sensed brightness temperature in the regional soil moisture simulation. Hydrol Earth Syst Scs Discuss 6:1233–1260

    Article  Google Scholar 

  • Shutko AM (1982) Microwave radiometry of lands under natural and artificial moistening. IEEE Trans Geosci Remote 20:18–26

    Article  Google Scholar 

  • Shutko AM, Haldin A, Krapivin V, Novitchikhin E, Sidorov I, Yu T, Haarbrink R, Georgiev G, Kancheva R, Nikolov H, Coleman T, Archer F, Pampaloni P, Paloscia S, Krisilov A, Carmona A (2007) Microwave radiometry in monitoring and emergency mapping of water seepage and dangerously high groundwaters. J Telecommun Inf Technol 1:76–82

    Google Scholar 

  • Shutko AM, Krapivin VF, Haarbrink RB, Sidorov IA, Novichikhin EP, Archer F, Krisilov AD (2010) Practical microwave radiometric risk assessment. Professor Marin Drinov Academic Publishing House, Sofia

    Google Scholar 

  • Solheim F, Godwin J, Ware R (1998) Passive ground-based remote sensing of atmospheric temperature, water wapor, and cloud liquid profiles by a frequency synthesized microwave radiometer. The Meteorologische Zeitschrift (Meteorological Journal) 7:370–376

    Article  Google Scholar 

  • Surhone LM, Timpledon MT, Marseken SF (2010) Stefan-Boltzmann law: Stefan-Boltzmann law, black body, irradiance, thermodynamic temperature, ultraviolet catastrophe, history of quantum mechanics, thermodynamics. Betascript Publishing, Ottawa

    Google Scholar 

  • Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä J-P, Koskinen J, Bojkov B (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Proc SPIE 115(12):3517–3529

    Google Scholar 

  • Tianhong L, Yanxin S, An X (2003) Integration of large scale fertilizing models with GIS using minimum unit. Environ Model 18(3):221–229

    Article  Google Scholar 

  • Tiuri ME, Sihvola AH, Nyfors EG, Hallikaiken MT (1984) The complex dielectric constant of snow at microwave frequencies. IEEE J Ocean Eng OE-9(5):377–382

    Article  Google Scholar 

  • Trefil JS (2003) The nature of science: an A–Z guide to the laws and principles governing our universe. Houghton Mifflin Harcourt, Boston

    Google Scholar 

  • Tsutsui H, Maeda T (2017) Possibility of estimating seasonal snow depth based solely on passive microwave remote sensing on the Greenland Ice Sheet in spring. Remote Sens 9(523):1–22

    Google Scholar 

  • Varotsos CA, Krapivin VF (2017) A new big data approach based on geoecological information-modeling system. Big Earth Data 1(1–2):47–63

    Article  Google Scholar 

  • Varotsos CA, Krapivin VF, Chukhlantsev AA (2019) Microwave polarization characteristics of snow at 6.9 and 18.7 GHz: estimating the water content of the snow layers. J Quant Spectrosc Radiat Transf 225:219–226

    Article  Google Scholar 

  • Wen B, Tsang L, Winnerbrener DP, Ishimaru A (1990) Dense medium radiative transfer theory: comparison with experiment and application to microwave remote sensing and polarimetry. IEEE Trans Geosci Remote 28:46–59

    Article  Google Scholar 

  • Wen J, Jackson TJ, Bindlish R, Hsu AN (2005) Retrieval of soil moisture and vegetation water content using SSM/I data over a corn and soybean region. Journal of Hydrometeorology—Special Section 6:854–861

    Article  Google Scholar 

  • Woodhouse IH (2005) Introduction to microwave remote sensing. CRC Press, Washigton, DC

    Google Scholar 

  • Xie X, Crewell S, Löhnert U, Simmer C, Miao J (2015) Polarization signatures and brightness temperatures caused by horizontally oriented snow particles at microwave bands: Effects of atmospheric absorption. JGR Atmos 120:6145–6160

    Google Scholar 

  • Zhou DK, Larar AM, Liu X, Smith WL (2011) Global land surface emissivity retrieved from satellite ultraspectral IR measurements. IEEE Trans Geosci Remote 49(4):1277–1290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varotsos, C.A., Krapivin, V.F. (2020). Basic Concepts of Microwave Radiometry. In: Microwave Remote Sensing Tools in Environmental Science . Springer, Cham. https://doi.org/10.1007/978-3-030-45767-9_1

Download citation

Publish with us

Policies and ethics