Skip to main content

Key Recovery from Gram–Schmidt Norm Leakage in Hash-and-Sign Signatures over NTRU Lattices

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12107)

Abstract

In this paper, we initiate the study of side-channel leakage in hash-and-sign lattice-based signatures, with particular emphasis on the two efficient implementations of the original GPV lattice-trapdoor paradigm for signatures, namely NIST second-round candidate Falcon and its simpler predecessor DLP. Both of these schemes implement the GPV signature scheme over NTRU lattices, achieving great speed-ups over the general lattice case. Our results are mainly threefold.

First, we identify a specific source of side-channel leakage in most implementations of those schemes, namely, the one-dimensional Gaussian sampling steps within lattice Gaussian sampling. It turns out that the implementations of these steps often leak the Gram–Schmidt norms of the secret lattice basis.

Second, we elucidate the link between this leakage and the secret key, by showing that the entire secret key can be efficiently reconstructed solely from those Gram–Schmidt norms. The result makes heavy use of the algebraic structure of the corresponding schemes, which work over a power-of-two cyclotomic field.

Third, we concretely demonstrate the side-channel attack against DLP (but not Falcon due to the different structures of the two schemes). The challenge is that timing information only provides an approximation of the Gram–Schmidt norms, so our algebraic recovery technique needs to be combined with pruned tree search in order to apply it to approximate values. Experimentally, we show that around \(2^{35}\) DLP traces are enough to reconstruct the entire key with good probability.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45727-3_2
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-45727-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1.

Notes

  1. 1.

    The scaling factor is \((\sqrt{2\pi })^{-1}\) before the smoothing parameter \(\eta _{\epsilon }(\mathbb {Z})\) in [38].

  2. 2.

    Each root of \(x^n+1\) describes one complex embedding by mean of evaluation.

  3. 3.

    This describes the discriminant of \(T^2-\mathrm {Tr}(u)T + \mathrm {N}(u)\) whose roots are u and \(\sigma (u)\) in \(\mathcal K_n\). It is then not surprising that \(\mathrm {Tr}(\zeta _n^{-1}u)\overline{\mathrm {Tr}(\zeta _n^{-1}u)}\) is a square only in \(\mathcal K_n\).

References

  1. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Bai, S., Galbraith, S.D.: An improved compression technique for signatures based on learning with errors. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 28–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-9_2

    CrossRef  Google Scholar 

  3. Barthe, G., et al.: Masking the GLP lattice-based signature scheme at any order. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 354–384. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_12

    CrossRef  Google Scholar 

  4. Barthe, G., Belaïd, S., Espitau, T., Fouque, P.A., Rossi, M., Tibouchi, M.: GALACTICS: Gaussian sampling for lattice-based constant-time implementation of cryptographic signatures, revisited. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2147–2164. ACM Press (2019)

    Google Scholar 

  5. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  6. Bootle, J., Delaplace, C., Espitau, T., Fouque, P.-A., Tibouchi, M.: LWE without modular reduction and improved side-channel attacks against BLISS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 494–524. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_17

    CrossRef  Google Scholar 

  7. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload – a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_16

    CrossRef  MATH  Google Scholar 

  8. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_3

    CrossRef  Google Scholar 

  9. Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral matrix gram root and lattice Gaussian sampling without floats. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 608–637. Springer, Cham (2020)

    Google Scholar 

  10. Ducas, L., et al.: CRYSTALS-Dilithium: a lattice-based digital signature scheme. IACR TCHES 2018(1), 238–268 (2018). https://tches.iacr.org/index.php/TCHES/article/view/839

    MathSciNet  Google Scholar 

  11. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_2

    CrossRef  Google Scholar 

  12. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_27

    CrossRef  Google Scholar 

  13. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: ISSAC, pp. 191–198 (2016)

    Google Scholar 

  14. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on BLISS lattice-based signatures: exploiting branch tracing against strongSwan and electromagnetic emanations in microcontrollers. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1857–1874. ACM Press, October/November 2017

    Google Scholar 

  15. Espitau, T., Fouque, P., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-based signature schemes and key exchange protocols. IEEE Trans. Comput. 67(11), 1535–1549 (2018). https://doi.org/10.1109/TC.2018.2833119

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    CrossRef  Google Scholar 

  17. Fouque, P.A., Kirchner, P., Tibouchi, M., Wallet, A., Yu, Y.: Key Recovery from Gram-Schmidt Norm Leakage in Hash-and-Sign Signatures over NTRU Lattices. IACR Cryptology ePrint Archive, report 2019/1180 (2019)

    Google Scholar 

  18. Gama, N., Howgrave-Graham, N., Nguyen, P.Q.: Symplectic lattice reduction and NTRU. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 233–253. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_15

    CrossRef  Google Scholar 

  19. Gentry, C., Jonsson, J., Stern, J., Szydlo, M.: Cryptanalysis of the NTRU signature scheme (NSS) from Eurocrypt 2001. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 1–20. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_1

    CrossRef  MATH  Google Scholar 

  20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 197–206. ACM Press, May 2008

    Google Scholar 

  21. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_20

    CrossRef  Google Scholar 

  22. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

    CrossRef  Google Scholar 

  23. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_31

    CrossRef  MATH  Google Scholar 

  24. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36563-X_9

    CrossRef  Google Scholar 

  25. Hoffstein, J., Lieman, D., Silverman, J.H.: Polynomial rings and efficient public key authentication (1999)

    Google Scholar 

  26. Hogg, R.V., McKean, J.W., Craig, A.T.: Introduction to Mathematical Satistics, 8th edn. Pearson, London (2018)

    Google Scholar 

  27. Hülsing, A., Lange, T., Smeets, K.: Rounded Gaussians - fast and secure constant-time sampling for lattice-based crypto. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 728–757. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_25

    CrossRef  Google Scholar 

  28. Karmakar, A., Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Constant-time discrete Gaussian sampling. IEEE Trans. Comput. 67(11), 1561–1571 (2018)

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. Karmakar, A., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Pushing the speed limit of constant-time discrete Gaussian sampling. A case study on the Falcon signature scheme. In: DAC 2019 (2019)

    Google Scholar 

  30. Klein, P.N.: Finding the closest lattice vector when it’s unusually close. In: Shmoys, D.B. (ed.) 11th SODA, pp. 937–941. ACM-SIAM, January 2000

    Google Scholar 

  31. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_35

    CrossRef  Google Scholar 

  32. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    CrossRef  Google Scholar 

  33. Lyubashevsky, V., et al.: CRYSTALS-DILITHIUM. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  34. Lyubashevsky, V., Prest, T.: Quadratic time, linear space algorithms for Gram-Schmidt orthogonalization and Gaussian sampling in structured lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 789–815. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_30

    CrossRef  MATH  Google Scholar 

  35. McCarthy, S., Howe, J., Smyth, N., Brannigan, S., O’Neill, M.: BEARZ attack FALCON: implementation attacks with countermeasures on the FALCON signature scheme. In: Obaidat, M.S., Samarati, P. (eds.) SECRYPT, pp. 61–71 (2019)

    Google Scholar 

  36. McCarthy, S., Smyth, N., O’Sullivan, E.: A practical implementation of identity-based encryption over NTRU lattices. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 227–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71045-7_12

    CrossRef  Google Scholar 

  37. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    CrossRef  Google Scholar 

  38. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  39. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic, constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 455–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_16

    CrossRef  Google Scholar 

  40. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_17

    CrossRef  Google Scholar 

  41. Oder, T., Speith, J., Höltgen, K., Güneysu, T.: Towards practical microcontroller implementation of the signature scheme Falcon. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 65–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_4

    CrossRef  Google Scholar 

  42. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_5

    CrossRef  Google Scholar 

  43. Pessl, P., Bruinderink, L.G., Yarom, Y.: To BLISS-B or not to be: attacking strongSwan’s implementation of post-quantum signatures. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 1843–1855. ACM Press, October/November 2017

    Google Scholar 

  44. Plantard, T., Sipasseuth, A., Dumondelle, C., Susilo, W.: DRS. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  45. Pornin, T.: New Efficient, Constant-Time Implementations of Falcon, August 2019. https://falcon-sign.info/falcon-impl-20190802.pdf

  46. Prest, T.: Proof-of-concept implementation of an identity-based encryption scheme over NTRU lattices (2014). https://github.com/tprest/Lattice-IBE

  47. Prest, T., et al.: FALCON. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  48. Prest, T., Ricosset, T., Rossi, M.: Simple, fast and constant-time Gaussian sampling over the integers for Falcon. In: Second PQC Standardization Conference (2019)

    Google Scholar 

  49. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_4

    CrossRef  Google Scholar 

  50. Tibouchi, M., Wallet, A.: One bit is all it takes: a devastating timing attack on BLISS’s non-constant time sign flips. Cryptology ePrint Archive, Report 2019/898 (2019). https://eprint.iacr.org/2019/898

  51. Yu, Y., Ducas, L.: Learning strikes again: the case of the DRS signature scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 525–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_18

    CrossRef  Google Scholar 

  52. Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: pqNTRUSign. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  53. Zhao, R.K., Steinfeld, R., Sakzad, A.: FACCT: FAst, Compact, and Constant-Time Discrete Gaussian Sampler over Integers. IACR Cryptology ePrint Archive, report 2018/1234 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European Union Horizon 2020 Research and Innovation Program Grant 780701 (PROMETHEUS). This work has also received a French government support managed by the National Research Agency in the “Investing for the Future” program, under the national project RISQ P141580-2660001/DOS0044216, and under the project TYREX granted by the CominLabs excellence laboratory with reference ANR-10-LABX-07-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Tibouchi or Yang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 International Association for Cryptologic Research

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Fouque, PA., Kirchner, P., Tibouchi, M., Wallet, A., Yu, Y. (2020). Key Recovery from Gram–Schmidt Norm Leakage in Hash-and-Sign Signatures over NTRU Lattices. In: Canteaut, A., Ishai, Y. (eds) Advances in Cryptology – EUROCRYPT 2020. EUROCRYPT 2020. Lecture Notes in Computer Science(), vol 12107. Springer, Cham. https://doi.org/10.1007/978-3-030-45727-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45727-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45726-6

  • Online ISBN: 978-3-030-45727-3

  • eBook Packages: Computer ScienceComputer Science (R0)