Advertisement

Investigating the Role of Pedestrian Groups in Shared Spaces through Simulation Modeling

  • Suhair Ahmed
  • Fatema T. JohoraEmail author
  • Jörg P. Müller
Conference paper
  • 117 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1199)

Abstract

In shared space environments, urban space is shared among different types of road users, who frequently interact with each other to negotiate priority and coordinate their trajectories. Instead of traffic rules, interactions among them are conducted by informal rules like speed limitations and by social protocols e.g., courtesy behavior. Social groups (socially related road users who walk together) are an essential phenomenon in shared spaces and affect the safety and efficiency of such environments. To replicate group phenomena and systematically study their influence in shared spaces; realistic models of social groups and the integration of these models into shared space simulations are required. In this work, we focus on pedestrian groups and adopt an extended version of the social force model in conjunction with a game-theoretic model to simulate their movements. The novelty of our paper is in the modeling of interactions between social groups and vehicles. We validate our model by simulating scenarios involving interaction between social groups and also group-to-vehicle interaction.

Keywords

Pedestrian groups Mixed traffic Microscopic simulation 

Notes

Acknowledgements

This research is supported by the German Research Foundation (DFG) through the SocialCars Research Training Group (GRK 1931). We acknowledge the MODIS DFG project for providing datasets.

References

  1. 1.
    Anvari, B., Bell, M.G., Sivakumar, A., Ochieng, W.Y.: Modelling shared space users via rule-based social force model. Transp. Res. Part C Emerg. Technol. 51, 83–103 (2015)CrossRefGoogle Scholar
  2. 2.
    Aschermann, M., Kraus, P., Müller, J.P.: LightJason: a BDI framework inspired by Jason. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds.) EUMAS/AT 2016. LNCS (LNAI), vol. 10207, pp. 58–66. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59294-7_6. https://lightjason.github.ioCrossRefGoogle Scholar
  3. 3.
    Bjørnskau, T.: The zebra crossing game-using game theory to explain a discrepancy between road user behaviour and traffic rules. Saf. Sci. 92, 298–301 (2017)CrossRefGoogle Scholar
  4. 4.
    Cheng, H., Sester, M.: Modeling mixed traffic in shared space using LSTM with probability density mapping. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3898–3904. IEEE (2018)Google Scholar
  5. 5.
    Costa, M.: Interpersonal distances in group walking. J. Nonverbal Behav. 34(1), 15–26 (2010).  https://doi.org/10.1007/s10919-009-0077-yCrossRefGoogle Scholar
  6. 6.
    Gettman, D., Head, L.: Surrogate safety measures from traffic simulation models. Transp. Res. Rec. 1840(1), 104–115 (2003)CrossRefGoogle Scholar
  7. 7.
    Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)CrossRefGoogle Scholar
  8. 8.
    Huang, L., et al.: Social force model-based group behavior simulation in virtual geographic environments. ISPRS Int. J. Geo-Inf. 7(2), 79 (2018)CrossRefGoogle Scholar
  9. 9.
    Johora, F.T., Müller, J.P.: Modeling interactions of multimodal road users in shared spaces. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3568–3574. IEEE (2018)Google Scholar
  10. 10.
    Kamphuis, A., Overmars, M.H.: Finding paths for coherent groups using clearance. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 19–28. Eurographics Association (2004)Google Scholar
  11. 11.
    Kita, H.: A merging-giveway interaction model of cars in a merging section: a game theoretic analysis. Transp. Res. Part A Policy Pract. 33(3–4), 305–312 (1999)CrossRefGoogle Scholar
  12. 12.
    Koefoed-Hansen, A., Brodal, G.S.: Representations for path finding in planar environments. Ph.D. thesis, Citeseer (2012)Google Scholar
  13. 13.
    Kremyzas, A., Jaklin, N., Geraerts, R.: Towards social behavior in virtual-agent navigation. Sci. China Inf. Sci. 59(11), 1–17 (2016).  https://doi.org/10.1007/s11432-016-0074-9CrossRefGoogle Scholar
  14. 14.
    Lütteken, N., Zimmermann, M., Bengler, K.J.: Using gamification to motivate human cooperation in a lane-change scenario. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 899–906. IEEE (2016)Google Scholar
  15. 15.
    Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Natl. Acad. Sci. 108(17), 6884–6888 (2011)CrossRefGoogle Scholar
  16. 16.
    Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE 5(4), e10047 (2010)CrossRefGoogle Scholar
  17. 17.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I 2(12), 2221–2229 (1992)Google Scholar
  18. 18.
    Pascucci, F., Rinke, N., Schiermeyer, C., Friedrich, B., Berkhahn, V.: Modeling of shared space with multi-modal traffic using a multi-layer social force approach. Transp. Res. Procedia 10, 316–326 (2015)CrossRefGoogle Scholar
  19. 19.
    Pascucci, F., Rinke, N., Schiermeyer, C., Berkhahn, V., Friedrich, B.: Should I stay or should I go? A discrete choice model for pedestrian-vehicle conflicts in shared space. Technical report (2018)Google Scholar
  20. 20.
    Rinke, N., Schiermeyer, C., Pascucci, F., Berkhahn, V., Friedrich, B.: A multi-layer social force approach to model interactions in shared spaces using collision prediction. Transp. Res. Procedia 25, 1249–1267 (2017)CrossRefGoogle Scholar
  21. 21.
    Schönauer, R.: A microscopic traffic flow model for shared space. Ph.D. thesis, Graz University of Technology (2017)Google Scholar
  22. 22.
    Schönauer, R., Stubenschrott, M., Huang, W., Rudloff, C., Fellendorf, M.: Modeling concepts for mixed traffic: steps toward a microscopic simulation tool for shared space zones. Transp. Res. Rec. 2316(1), 114–121 (2012)CrossRefGoogle Scholar
  23. 23.
    Vizzari, G., Manenti, L., Crociani, L.: Adaptive pedestrian behaviour for the preservation of group cohesion. Complex Adapt. Syst. Model. 1(1), 7 (2013).  https://doi.org/10.1186/2194-3206-1-7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Suhair Ahmed
    • 1
  • Fatema T. Johora
    • 1
    Email author
  • Jörg P. Müller
    • 1
  1. 1.Technische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations