Advertisement

Privacy-Preserving Human-Machine Co-existence on Smart Factory Shop Floors

Conference paper
  • 110 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1199)

Abstract

Smart factories are characterized by the presence of both human actors and Automated Guided Vehicles (AGVs) for the transport of materials. To avoid collisions between workers and AGVs, the latter must be aware of the workers’ location on the shop floor. Wearable devices like smart watches are a viable solution to determine and wirelessly transmit workers’ current location. However, when these locations are sent at regular intervals, workers’ locations and trajectories can be tracked, thus potentially reducing the acceptance of these devices by workers and staff councils. Deliberately obfuscating location information (spatial cloaking) is a widely applied solution to minimize the resulting location privacy implications. However, a number of configuration parameters need to be determined for the safe, yet privacy-preserving, operation of spatial cloaking. We comprehensively analyze the parameter space and derive suitable settings to make smart factories safe and cater to an adequate privacy protection workers.

Keywords

Smart factory Spatial cloaking Privacy protection 

References

  1. 1.
    ABI Research: ABI Research Forecasts Enterprise Wearables will Top US\$60 Billion in Revenue in 2022 (2017). https://www.abiresearch.com/press/abi-research-forecasts-enterprise-wearables-will/. Accessed 29 June 2019
  2. 2.
    Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24646-6_1CrossRefGoogle Scholar
  3. 3.
    Benjaafar, S., Heragu, S.S., Irani, S.A.: Next generation factory layouts: research challenges and recent progress. Interfaces 32(6), 58–76 (2002)CrossRefGoogle Scholar
  4. 4.
    Carey, N.: Establishing pedestrian walking speeds. Technical report, Portland State University (2005)Google Scholar
  5. 5.
    Carley, M.: Working Time Developments – 2008 (2009). https://www.eurofound.europa.eu/publications/report/2009/working-time-developments-2008. Accessed 12 July 2019
  6. 6.
    Choi, B., Hwang, S., Lee, S.H.: What drives construction workers’ acceptance of wearable technologies in the workplace? Indoor localization and wearable health devices for occupational safety and health. Automat. Constr. 84, 31–41 (2017)CrossRefGoogle Scholar
  7. 7.
    Chow, C.Y., Mokbel, M.F., Aref, W.G.: Casper*: query processing for location services without compromising privacy. ACM Trans. Database Syst. (TODS) 34(4), 1–45 (2009)CrossRefGoogle Scholar
  8. 8.
    Chow, C.Y., Mokbel, M.F., Liu, X.: Spatial cloaking for anonymous location-based services in mobile peer-to-peer environments. GeoInformatica 15(2), 351–380 (2011)CrossRefGoogle Scholar
  9. 9.
    Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: a survey. Annu. Rev. Control 31(2), 255–267 (2007)CrossRefGoogle Scholar
  10. 10.
    Golnabi, H.: Role of laser sensor systems in automation and flexible manufacturing. Robot. Comput. Integr. Manuf. 19(1–2), 201–210 (2003)CrossRefGoogle Scholar
  11. 11.
    Gorm, N.: Personal health tracking technologies in practice. In: Lee, C.P., Poltrock, S., Barkhuus, L., Borges, M., Kellogg, W. (eds.) Companion of the ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW), pp. 69–72 (2017)Google Scholar
  12. 12.
    Gorm, N., Shklovski, I.: Sharing steps in the workplace. In: Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI), pp. 4315–4319 (2016)Google Scholar
  13. 13.
    Grau, A., Indri, M., Bello, L.L., Sauter, T.: Industrial robotics in factory automation: from the early stage to the internet of things. In: Proceedings of the 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 6159–6164 (2017)Google Scholar
  14. 14.
    Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial and temporal cloaking. In: Proceedings of the 1st International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 31–42 (2003)Google Scholar
  15. 15.
    Ilas, C.: Electronic sensing technologies for autonomous ground vehicles: a review. In: Proceedings of the 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE), pp. 1–6 (2013)Google Scholar
  16. 16.
    Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dummies for location-based services. In: Proceedings of the 2nd International Conference on Pervasive Services (ICPS), pp. 88–97 (2005)Google Scholar
  17. 17.
    Lee, S.W., Mase, K.: Activity and location recognition using wearable sensors. IEEE Pervasive Comput. 1(3), 24–32 (2002)CrossRefGoogle Scholar
  18. 18.
    Lingg, E., Leone, G., Spaulding, K., B’Far, R.: Cardea: cloud based employee health and wellness integrated wellness application with a wearable device and the HCM data store. In: Proceedings of the 1st IEEE World Forum on Internet of Things (WF-IoT), pp. 265–270 (2014)Google Scholar
  19. 19.
    Lucke, D., Constantinescu, C., Westkämper, E.: Smart factory-a step towards the next generation of manufacturing. In: Mitsuishi, M., Ueda, K., Kimura, F. (eds.) Manufacturing Systems and Technologies for the New Frontier, pp. 115–118. Springer, London (2008).  https://doi.org/10.1007/978-1-84800-267-8_23CrossRefGoogle Scholar
  20. 20.
    Murphy, A.: AGV Deep Dive: How Amazons 2012 Acquisition Sparked a \$10B Market (2017). https://loupventures.com/agv-deep-dive-how-amazons-2012-acquisition-sparked-a-10b-market/. Accessed 29 June 2019
  21. 21.
    Peissner, M., Hipp, C.: Potenziale der Mensch-Technik-Interaktion für die effiziente und vernetzte Produktion von morgen. Fraunhofer-Verlag Stuttgart (2013)Google Scholar
  22. 22.
    Radziwon, A., Bilberg, A., Bogers, M., Madsen, E.S.: The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Eng. 69, 1184–1190 (2014)CrossRefGoogle Scholar
  23. 23.
    Schellewald, V., Weber, B., Ellegast, R., Friemert, D., Hartmann, U.: Einsatz von Wearables zur Erfassung der körperlichen Aktivität am Arbeitsplatz. DGUV Forum 11, 36–37 (2016)Google Scholar
  24. 24.
    Stocker, A., Brandl, P., Michalczuk, R., Rosenberger, M.: Mensch-zentrierte IKT-Lösungen in einer Smart Factory. e & i Elektrotechnik und Informationstechnik 131(7), 207–211 (2014)Google Scholar
  25. 25.
    Tisue, S., Wilensky, U.: NetLogo: a simple environment for modeling complexity. In: Proceedings of the 7th International Conference on Complex Systems (ICCS), pp. 16–21 (2004)Google Scholar
  26. 26.
    U.S. Bureau of Labor Statistics: Average Weekly Hours of All Employees: Manufacturing [AWHAEMAN] (2019). https://fred.stlouisfed.org/series/AWHAEMAN. Accessed 12 July 2019
  27. 27.
    Weston, M.: Wearable surveillance - a step too far? Strateg. HR Rev. 14(6), 214–219 (2015)CrossRefGoogle Scholar
  28. 28.
    Wilensky, U., Hazzard, E., Froemke, R.: GasLab: an extensible modeling toolkit for exploring statistical mechanics. In: Proceedings of the 7th European Logo Conference (EUROLOGO), pp. 1–13 (1999)Google Scholar
  29. 29.
    Yoon, J.S., Shin, S.J., Suh, S.H.: A conceptual framework for the ubiquitous factory. Int. J. Prod. Res. 50(8), 2174–2189 (2012)CrossRefGoogle Scholar
  30. 30.
    Zebra Technologies: Zebra Study Reveals One-Half of Manufacturers Globally to Adopt Wearable Tech by 2022 (2017). https://www.zebra.com/us/en/about-zebra/newsroom/press-releases/2017/zebra-study-reveals-one-half-of-manufacturers-globally-to-adopt-.html. Accessed 29 June 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Computer ScienceUniversity of GöttingenGöttingenGermany
  2. 2.Department of InformaticsTechnische Universität ClausthalClausthal-ZellerfeldGermany

Personalised recommendations