Skip to main content

Automatic Calibration of a Farm Irrigation Model: A Multi-Modal Optimization Approach

  • Conference paper
  • First Online:
Artificial Evolution (EA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12052))

  • 373 Accesses

Abstract

In agriculture, plant cultivation requires to take numerous decisions. One of the major problems is irrigation: an adequate irrigation decision must be made accordingly to the hydric status of the plant and soil, and the weather forecasts. In precision agronomy, this leads to the use of hydric sensors combined with a numerical growth plant model. Such models can not often be tuned by experts. We proposed an automatic parameter calibration of the potato growth model based on data collected in several open fields. As these parameter calibration problems are ill-posed, the associated black-box optimization problem is supposed to be multi-modal. We then compare the performances of two state-of-the-art Evolution Strategies which use different restart mechanisms to automatically tune the set of parameters on different crops and shows that multi-modal optimization methods may be recommended for such class of optimization problems.

Supported by WEENAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Some parameters can also have no meaning from a biological point of view.

  2. 2.

    https://www.weenat.com/.

References

  1. Tang, Y., Reed, P., Wagener, T.: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrol. Earth Syst. Sci. Discuss. 2(6), 2465–2520 (2005)

    Article  Google Scholar 

  2. Gupta, H.V., Beven, K.J., Wagener, T.: Model calibration and uncertainty estimation. In: Encyclopedia of Hydrological Sciences (2006)

    Google Scholar 

  3. Whisler, F.D., et al.: Crop simulation models in agronomic systems. In: Advances in Agronomy, vol. 40, pp. 141–208. Elsevier (1986)

    Google Scholar 

  4. Raes, D., Steduto, P., Hsiao, T.C., Fereres, E.: Aquacrop–the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 101(3), 438–447 (2009)

    Article  Google Scholar 

  5. Ramat, E., Vandoorne, B.: Plant growth model for decision making support. Technical report, Université du Littoral Côte d’Opale, and ISA Lille (2002)

    Google Scholar 

  6. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, New York (2001). https://doi.org/10.1007/978-3-662-04378-3

    Book  MATH  Google Scholar 

  7. Rapin, J., Teytaud, O.: Nevergrad-a gradient-free optimization platform (2018). https://GitHub.com/FacebookResearch/Nevergrad

  8. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Number 15 in Problemata. Frommann-Holzboog (1973)

    Google Scholar 

  9. Li, X.: Multimodal optimization using niching methods, pp. 1–8. American Cancer Society (2016)

    Google Scholar 

  10. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. NCS. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-07407-8_7

    Book  MATH  Google Scholar 

  11. Ahrari, A., Deb, K., Preuss, M.: Multimodal optimization by covariance matrix self-adaptation evolution strategy with repelling subpopulations. Evol. Comput. 25(3), 439–471 (2017)

    Article  Google Scholar 

  12. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1769–1776. IEEE (2005)

    Google Scholar 

  13. Kadioglu, S., Sellmann, M., Wagner, M.: Learning a reactive restart strategy to improve stochastic search. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) LION 2017. LNCS, vol. 10556, pp. 109–123. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69404-7_8

    Chapter  Google Scholar 

  14. Teytaud, F., Teytaud, O.: Qr mutations improve many evolution strategies: a lot on highly multimodal problems. In: Proceedings of the 2016 GECCO Conference, pp. 35–36 (2016)

    Google Scholar 

  15. Schoenauer, M., Teytaud, F., Teytaud, O.: A rigorous runtime analysis for quasi-random restarts and decreasing stepsize. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 37–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35533-2_4

    Chapter  Google Scholar 

  16. Beaujouan, V.: Modélisation des transferts d’eau et d’azote dans les sols et les Nappes. Développement d’un modèle conceptuel distribué. Application à de petits bassins versants. Ph.D., thesis, Ecole Nationale Supérieure Agronomique de Rennes (2001)

    Google Scholar 

  17. Allen, R.G., Pereira, L.S., Raes, D., Smith, M., et al.: Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage paper 56. FAO, Rome, vol. 300, no. 9 (1998). D05109

    Google Scholar 

  18. Teng, P.S., Johnson, K.B., Johnson, S.B.: Development of a simple potato growth model for use in crop-pest management. Agric. Syst. 19(3), 189–209 (1986)

    Article  Google Scholar 

  19. Beaujouan, V., Durand, P., Ruiz, L.: Modelling the effect of the spatial distribution of agricultural practices on nitrogen fluxes in rural catchments. Ecol. Model. 137(1), 93–105 (2001)

    Article  Google Scholar 

  20. Van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci. Soc. Am. J. 44(5), 892–898 (1980)

    Article  Google Scholar 

  21. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  22. Hansen, N., Kern, S.: Evaluating the CMA evolution strategy on multimodal test functions. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_29

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the WEENAT company in particular for the financing of the CIFRE thesis and for their material support. Experiments presented in this paper were carried out using the CALCULCO computing platform, supported by SCOSI/ULCO (Service COmmun du Système d’Information de l’Université du Littoral Côte d’Opale).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amaury Dubois , Fabien Teytaud or Sébastien Verel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dubois, A., Teytaud, F., Ramat, E., Verel, S. (2020). Automatic Calibration of a Farm Irrigation Model: A Multi-Modal Optimization Approach. In: Idoumghar, L., Legrand, P., Liefooghe, A., Lutton, E., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2019. Lecture Notes in Computer Science(), vol 12052. Springer, Cham. https://doi.org/10.1007/978-3-030-45715-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45715-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45714-3

  • Online ISBN: 978-3-030-45715-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics