Skip to main content

Cognitive Approaches to Human Computer Interaction

  • Chapter
  • First Online:
Cognitive Modeling for Automated Human Performance Evaluation at Scale

Part of the book series: Human–Computer Interaction Series ((BRIEFSHUMAN))

  • 406 Accesses

Abstract

This chapter presents a brief overview of theories and concepts that ar some well-established and widely used cognitive architectures, such as ACT-R (Anderson et al (2004) Psychol Rev 111(4):1036–1060; Anderson (2007) How can the human mind occur in the physical universe? Oxford series on cognitive models and architectures. Oxford University Press, Oxford) and SOAR (Laird (2012) Soar cognitive architecture. MIT Press, Cambridge). These are computational attempts to model cognition for general and complete tasks rather than for single, small tasks. This chapter also reviews the most known and used cognitive models, KLM and GOMS, which are computational models used for simulations of human performance and behavior (Ritter et al (2000) ACM Trans Comput-Hum Interact 7(2):141–173. https://doi.org/10.1145/353485.353486). We will show how some cognitive architectures that originated within artificial intelligence (AI) have been developed to cover aspects of cognitive science, and vice versa. The relevance of the cognitive approach to HCI can be seen in the successful use of cognitive models in the HCI community to evaluate designs, assist users’ interactions with computers, and substitute users in simulations (Ritter et al (2000) ACM Trans Comput-Hum Interact 7(2):141–173. https://doi.org/10.1145/353485.353486).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, J.R.: This week’s citation classic. Current Contents (52), 91 (1979). http://garfield.library.upenn.edu/classics1979/A1979HX09600001.pdf

  2. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychol. Rev. 111(4), 1036–1060 (2004)

    Google Scholar 

  3. Anderson, J.R., Lebiere, C.: The newell test for a theory of cognition. Behav. Brain Sci. 26(5), 587–601 (2003)

    Google Scholar 

  4. Anderson, J.R.J.R.: The Adaptive Character of Thought. Studies in Cognition. L. Erlbaum Associates, Hillsdale (1990)

    Google Scholar 

  5. Anderson, J.R.J.R.: How Can the Human Mind Occur in the Physical Universe? Oxford Series on Cognitive Models and Architectures. Oxford University Press, Oxford (2007)

    Google Scholar 

  6. Borst, J.P., Anderson, J.R.: A step-by-step tutorial on using the cognitive architecture ACT-R in combination with fmRI data. J. Math. Psychol. 76, 94–103 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Byrne, M.D., Anderson, J.R.: Serial modules in parallel: the psychological refractory period and perfect time-sharing. Psychol. Rev. 108(4), 847–869 (2001)

    Google Scholar 

  8. Card, S., Moran, T., Newell, A.: The keystroke-level model for user performance time with interactive systems. Commun. ACM 23(7), 396–410 (1980)

    Google Scholar 

  9. Card, S.K., Newell, A., Moran, T.P.: The Psychology of Human-Computer Interaction. L. Erlbaum Associates Inc., USA (1983)

    Google Scholar 

  10. Stires, D.M., Murphy, M.M.: PERT (Program Evaluation and Review Technique) CPM (Critical Path Method). Materials Management Inst., Boston (1962)

    Google Scholar 

  11. Hélie, S., Sun, R.: Incubation, insight, and creative problem solving: a unified theory and a connectionist model. Psychol. Rev. 117(3), 994–1024 (2010)

    Google Scholar 

  12. John, B.E., Kieras, D.E.: The goms family of user interface analysis techniques: comparison and contrast. ACM Trans. Comput.-Hum. Interact. 3(4), 320–351 (1996). https://doi.org/10.1145/235833.236054

    Google Scholar 

  13. Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny, P., Koss, F.V.: Automated intelligent pilots for combat flight simulation. AI Mag. 20(1), 27 (1999). https://www.aaai.org/ojs/index.php/aimagazine/article/view/1438

    Google Scholar 

  14. Kennedy, W.G., Afb, W.P.: Modeling intuitive decision making in ACT-R (2012)

    Google Scholar 

  15. Kieras, D., Marshall, S.P.: Visual availability and fixation memory in modeling visual search using the epic architecture (2006). http://www.escholarship.org/uc/item/8xq582jf

  16. Kieras, D.E., Wakefield, G.H., Thompson, E.R., Iyer, N., Simpson, B.D.: Modeling two-channel speech processing with the epic cognitive architecture. Top. Cogn. Sci. 8(1), 291–304 (2016)

    Article  Google Scholar 

  17. Kieras, D.E., Meyer, D.E.: An overview of the epic architecture for cognition and performance with application to human-computer interaction. Hum.-Comput. Interact. 12(4), 391–438 (1997). https://doi.org/10.1207/s15327051hci1204_4

    Article  Google Scholar 

  18. Kotseruba, I., Tsotsos, J.: A review of 40 years of cognitive architecture research: core cognitive abilities and practical applications. arXiv.org (2018). http://search.proquest.com/docview/2071239777/

  19. Laird, J.E.: Preface for special section on integrated cognitive architectures. SIGART Bull. 2(4), 12–13 (1991). https://doi.org/10.1145/122344.1063801

    Article  Google Scholar 

  20. Laird, J.E., Lebiere, C., Rosenbloom, P.S.: A standard model of the mind: toward a common computational framework across artificial intelligence, cognitive science, neuroscience, and robotics. AI Mag. 38(4), 13–26 (2017)

    Google Scholar 

  21. Laird, J.E., Newell, A., Rosenbloom, P.S.: Soar: an architecture for general intelligence. Artif. Intell. 33(1), 1–64 (1987)

    Google Scholar 

  22. Laird, J.E.J.L.: Soar Cognitive Architecture. MIT Press, Cambridge (2012)

    Google Scholar 

  23. Lebiere, C.: The dynamics of cognition: an ACT-R model of cognitive arithmetic. Kognitionswissenschaft 8(1), 5–19 (1999). https://doi.org/10.1007/BF03354932

    Google Scholar 

  24. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, New York (1982)

    Google Scholar 

  25. Meyer, D.E., Kieras, D.E.: A computational theory of executive cognitive processes and multiple-task performance: Part 1. Basic mechanisms. Psychol. Rev. 104(1), 3–65 (1997)

    Google Scholar 

  26. Möbus, C., Lenk, J.C., Özyurt, J., Thiel, C.M., Claassen, A.: Checking the ACT-R/brain mapping hypothesis with a complex task: using fmRI and Bayesian identification in a multi-dimensional strategy space. Cogn. Syst. Res. 12(3–4), 321–335 (2011)

    Google Scholar 

  27. Newell, A., Simon, H.: GPS, a Program That Simulates Human Thought. McGraw-Hill, New York (1963)

    Google Scholar 

  28. Newell, A.: You Can’t Play 20 Questions with Nature and Win: Projective Comments on the Papers of This Symposium, pp. 283–308. Academic, New York (1973)

    Google Scholar 

  29. Newell, A.: Physical symbol systems. Cogn. Sci. 4(2), 135–183 (1980)

    Google Scholar 

  30. Newell, A.: Unified Theories of Cognition. Harvard University Press, USA (1990)

    Google Scholar 

  31. Oh, H., Jo, S., Myung, R.: Computational modeling of human performance in multiple monitor environments with ACT-R cognitive architecture. Int. J. Indus. Ergon. 44(6), 857–865 (2014)

    Google Scholar 

  32. Paik, J., Pirolli, P.: ACT-R models of information foraging in geospatial intelligence tasks (report). Comput. Math. Organ. Theory 21(3), 274–295 (2015)

    Google Scholar 

  33. Ritter, F.E., Baxter, G.D., Jones, G., Young, R.M.: Supporting cognitive models as users. ACM Trans. Comput.-Hum. Interact. 7(2), 141–173 (2000). https://doi.org/10.1145/353485.353486

    Google Scholar 

  34. Ritter, F.E., Tehranchi, F., Oury, J.D.: ACT-R: a cognitive architecture for modeling cognition. WIREs Cogn. Sci. 10(3), e1488 (2019). https://doi.org/10.1002/wcs.1488

    Google Scholar 

  35. Rosenbloom, P.S., Laird, J.E., Newell, A., Mccarl, R.: A preliminary analysis of the soar architecture as a basis for general intelligence. Artif. Intell. 47(1–3), 289–325 (1991)

    MathSciNet  Google Scholar 

  36. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol.1, Foundations. Computational Models of Cognition and Perception. MIT Press, Cambridge, MA (1986)

    Book  Google Scholar 

  37. Salvucci, D.D.: Modeling driver behavior in a cognitive architecture. Hum. Factors 48(2), 362–380 (2006). https://search.proquest.com/docview/216466223?accountid=17256, copyright – Copyright Human Factors and Ergonomics Society Summer 2006; Document feature – Illustrations; Equations; Charts; Tables; Graphs; Last updated – 2017-11-09; CODEN – HUFAA6

  38. Salvucci, D.D.: Rapid prototyping and evaluation of in-vehicle interfaces. ACM Trans. Comput.-Hum. Interact. 16(2) (2009). https://doi.org/10.1145/1534903.1534906

  39. Salvucci, D.D., Lee, F.J.: Simple cognitive modeling in a complex cognitive architecture. In: Human Factors in Computing Systems: CHI 2003 Conference Proceedings, pp. 265–272. ACM Press (2003)

    Google Scholar 

  40. Sun, R., Hélie, S.: Psychologically realistic cognitive agents: taking human cognition seriously. J. Exp. Theor. Artif. Intell. 25(1), 65–92 (2013). https://doi.org/10.1080/0952813X.2012.661236

    Google Scholar 

  41. Sun, R., Merrill, E., Peterson, T.: From implicit skills to explicit knowledge: a bottom-up model of skill learning. Cogn. Sci. 25(2), 203–244 (2001)

    Google Scholar 

  42. Sun, R., Zhang, X.: Accounting for a variety of reasoning data within a cognitive architecture. J. Exp. Theor. Artif. Intell. 18(2), 169–191 (2006). https://doi.org/10.1080/09528130600557713

    Google Scholar 

  43. Taatgen, N., Anderson, J.R.: The past, present, and future of cognitive architectures. Top. Cogn. Sci. 2(4), 693–704 (2010). https://doi.org/10.1111/j.1756-8765.2009.01063.x

    Google Scholar 

  44. Wiiliams, N., Li, S.: Simulating human detection of phishing websites: an investigation into the applicability of ACT-R cognitive behaviour architecture model (2017)

    Google Scholar 

  45. Zhang, Z., Russwinkel, N., Prezenski, S.: Modeling individual strategies in dynamic decision-making with ACT-R: a task toward decision-making assistance in HCI. Proc. Comput. Sci. 145, 668–674 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, H., Li, S., Rusconi, P. (2020). Cognitive Approaches to Human Computer Interaction. In: Cognitive Modeling for Automated Human Performance Evaluation at Scale . Human–Computer Interaction Series(). Springer, Cham. https://doi.org/10.1007/978-3-030-45704-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45704-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45703-7

  • Online ISBN: 978-3-030-45704-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics