Skip to main content

Optoelectronic oscillator (OEO) as the Time and Spatial Correlator of Random Variables with Differential Delay Line

  • Chapter
  • First Online:
Laser Optoelectronic Oscillators

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 232))

  • 560 Accesses

Abstract

In this chapter, we examine optoelectronic oscillator (ОЕО) as the time and spatial correlator of random quantities. At first, we investigate the model of nonsymmetrical dielectric waveguide structure of the laser and the optical waveguide. Then, we analyze the OEO with the direct modulation on the base of abbreviated differential equations and discuss the problems of the frequency control in OEO DM by the laser pumping current. Then we examine the schemes of the frequency control in OEO DM with differential fiber-optical system. The problems of the parametric and long-term frequency instability of OEO are discussed. The fluctuation equations for the power spectral density of the amplitude noise and the phase noise in OEO DM are analyzed. Systems of frequency and phase automatic control in OEO are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Zhalud, V.N. Kuleshov, Noise in Semiconductor Devices. Under Edition of A.K. Naryshkin (Sovetskoe Radio, 416 p. (in Russian), Moscow, 1977)

    Google Scholar 

  2. J.W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, Englewood, 2006)

    Google Scholar 

  3. B.T. Gorianov, A.G. Zhuravliov, V.I. Tikhonov, Statistical Radio Engineering. [In Russian] (Sovetskoe Radio Publisher, Moscow, 1980)

    Google Scholar 

  4. T.L. Paoli, Waveguiding in a stripe-geometry junction laser. IEEE J. Quantum Electron. QE-13, 662–668 (1977)

    Article  ADS  Google Scholar 

  5. M.M. Nieto, Exact wave-function normalization constants for the Poschl-Teller potentials. Phys. Rev. A 17, 1273–1283 (1978)

    Article  ADS  Google Scholar 

  6. M.A. Man’ko, G.T. Mikaelyan, Modes and Mode Transformation in Active Semiconductor Waveguides [An Introduction to the Physics of Injection Lasers] (Nauka Publishing House., 294 p., [in Russian], Moscow, 1983)

    Google Scholar 

  7. E. Artin, The Gamma Function (Dover Publications, Mineola, 2015)

    MATH  Google Scholar 

  8. H. Stark (ed.), Applications of Optical Fourier Transforms (Academic Press, New York, 1982)

    Google Scholar 

  9. S.L. Chuang, Physics of Photonic Devices (Wiley, New Jersey, 2009)

    Google Scholar 

  10. V.S. Zholnerov, A.V. Ivanov, V.D. Kurnosov, R.V. Chernov, Parameters of a laser diode with a fiber Bragg grating at different fiber lengths. Tech. Phys. 59, 416–420 (2014)

    Article  Google Scholar 

  11. P.V. Gorlachuk, A.V. Ivanov, V.D. Kurnosov, R.V. Chernov, et al., Simulation of power current characteristics of high-power semiconductor lasers emitting in the range 1.5–1.55 μm. Quantum Electron. 44(2), 149 (2014)

    Article  ADS  Google Scholar 

  12. C.Y. Tsai, F.P. Shih, T.L. Sung, T.Y. Wu, C.H. Chen, A small-signal analysis of the modulation response of high-speed quantum-well lasers: effects of spectral hole burning, carrier heating, and carrier diffusion-capture-escape. IEEE J. Quantum Electron. 33, 2084 (1997)

    Article  ADS  Google Scholar 

  13. Alexander A. Bortsov, Yuri B. Il’in, Laser spectral line widening effect on RF phase and amplitude noises of an optoelectronic oscillator OEO. J. Radio Eng. (2),21-31 (2010),DOI:10.13140/RG.2.2.35665.07527

    Google Scholar 

  14. Alexander A. Bortsov and Sergey M. Smolskiy, "Opto-Electronic Oscillator with Mach-Zender Modulator", Infocommunications Journal, Vol. XI, No 1, March 2019, 45-53, (2019),DOI: 10.13140/RG.2.2.20992.69126

    Google Scholar 

  15. L. Stolpner, S. Lee, S. Li, A. Mehnert, P. Mols, S. Siala. Low noise planar external cavity laser for interferometric fiber optic sensors, in Proceedings of SPIE 7004, 19th International Conference on Optical Fiber Sensors,700451–700457, (2008)

    Google Scholar 

  16. K. Numata, J. Camp, M.A. Krainak, L. Stolpner, Performance of planar-waveguide external cavity laser for precision measurements. Opt. Exp. 18(22), 22781–22788 (2010)

    Article  ADS  Google Scholar 

  17. R.E. Bartolo, C.K. Kirkendall, V. Kupershmidt, S. Siala, Achieving narrow linewidth, low phase noise external cavity semiconductor lasers through the reduction of 1/f noise, in Proceedings of SPIE 61333, 6133OI (2006)

    Google Scholar 

  18. R.E. Bartolo, C.K. Kirkendall, V. Kupershmidt, S. Siala, Achieving narrow linewidth, low phase noise external cavity semiconductor lasers through the reduction of 1/f noise, in Novel In-Plane Semiconductor Lasers V, ed. by C. Mermelstein, D.P. Bour, Proceedings of SPIE, vol. 6133, 61330I (2006)

    Google Scholar 

  19. M. Morin, S. Ayotte, C. Latrasse, et al., What narrow-linewidth semiconductor lasers can do for defense and security? in Proceedings of SPIE—The International Society for Optical Engineering 7677, April 2010

    Google Scholar 

  20. A.A. Bortsov, The Influence of the Quality of Laser Resonator to Microwave Phase Noise in Opto-Electronic Oscillator, Electromagnetic Waves and Electronic Systems, vol 11 (Radiotekhnika, Moscow, 2012), DOI:10.13140/RG.2.2.28352.15361

    Google Scholar 

  21. M.T. Sebastian, R. Ubic, H. Jantunen, Microwave Materials and Applications, 2 Volume Set (Wiley, Hoboken, 2017)

    Book  Google Scholar 

  22. M. Yasin, H. Arof, S. W. Harun (eds.), Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications (Intech Open, London, 2015)

    Google Scholar 

  23. T. Babkina, Alexander A. Bortsov, et al., The fiber optical sensor of physical quantities [In Russian], 8 p, Patent USSR 1,485,750, 1989

    Google Scholar 

  24. A.A. Bortsov, Y.B. Il’in, Nanostructured opto-electronic oscillator of frequency-modulated signals, Patent RU: 103431, 2010,DOI: 10.13140/RG.2.2.19544.11524

    Google Scholar 

  25. A.A. Bortsov, Y.B. Il’in, V.E. Karasik, A. Karachev, et al., Method of manufacturing of work pieces for opticasing on nitrogen-doped quartz glass, Patent RU 2,537,450, 2015, DOI: 10.13140/RG.2.2.29191.01445

    Google Scholar 

  26. K.-H. Lee et al., A 30-GHz self-injection-locked oscillator having a long optical delay line for phase-noise reduction. IEEE Photon. Technol. Lett. 19(24), 1982–1984 (2008)

    Article  ADS  Google Scholar 

  27. Alexander A. Bortsov, Y.B. Il’in,Opto-electronic oscillator ,Generator of frequency-modulated signals, 2006-08-20, Patent RU2282302C1,2006, DOI: 10.13140/RG.2.2.29610.44488

    Google Scholar 

  28. Alexander A. Bortsov, The low noise laser optoelectronic oscillator with system of phase autofine tuning. Radioengineering (Moscow) 6, 42–49 (2011)

    Google Scholar 

  29. X.S. Yao, L. Maleki, Multiloop optoelectronic oscillator. IEEE J. Quantum Electron. 36(1), 79–84 (2000)

    Article  ADS  Google Scholar 

  30. D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bortsov, A.A., Il’in, Y.B., Smolskiy, S.M. (2020). Optoelectronic oscillator (OEO) as the Time and Spatial Correlator of Random Variables with Differential Delay Line. In: Laser Optoelectronic Oscillators. Springer Series in Optical Sciences, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-030-45700-6_7

Download citation

Publish with us

Policies and ethics