Skip to main content

Zero in the Spectrum

  • Chapter
  • First Online:
Critical Point Theory
  • 444 Accesses

Abstract

In the previous chapter we noted that in our study of semilinear elliptic partial differential equations of the form

$$\displaystyle \mathcal A u = f(x,u), u \in D $$

in unbounded domains, we required that the resolvent set of \(\mathcal A\) not be empty. For convenience, we assumed that it contain 0. This allowed us to choose an interval \((a,b) \subset \rho (\mathcal A),\) where a < 0 < b. We let \( D = D(|\mathcal A|{ }^{(1/2)}).\) With the scalar product \((u,v)_D= (|\mathcal A|{ }^{(1/2)}u,|\mathcal A|{ }^{(1/2)}v),\) it became a Hilbert space. We let

$$\displaystyle N= E(-\infty , a], \quad M = E[b, \infty ) $$

be the negative and positive invariant subspaces of \(\mathcal A.\) Then

$$\displaystyle (\mathcal A v,v) \le a \|v\|{ }^2, \quad v \in D \cap N, $$

and

$$\displaystyle (\mathcal A w,w) \ge b\|w\|{ }^2, \quad w \in D \cap M. $$

The hypotheses of our theorems depended on a and b using the fact that 0 was embedded in \(\rho (\mathcal A).\) The purpose of the present chapter is to study the situation when 0 is a boundary point of \(\rho (\mathcal A)\) and the arguments do not work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartsch T, Ding Y. On a nonlinear Schrödinger equation with periodic potential. Math Ann. 1999;313:15–37.

    Article  MathSciNet  Google Scholar 

  2. Berestycki H, Lions P-L. Nonlinear scalar field equations. I. Existence of a ground state. Arch Ration Mech Anal. 1983;82(4):313–345.

    Article  MathSciNet  Google Scholar 

  3. Reed M, Simon B. Methods of modern mathematical physics, vol. 4. Cambridge: Academic; 1978.

    MATH  Google Scholar 

  4. Schechter M. Nonlinear Schrödinger operators with zero in the spectrum. Z Angew Math Phys. 2015;66(5):2125–2141.

    Article  MathSciNet  Google Scholar 

  5. Szulkin A, Weth T. Ground state solutions for some indefinite variational problems. J Funct Anal. 2009;257(12):3802–3822.

    Article  MathSciNet  Google Scholar 

  6. Willem M, Zou W. On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ Math J. 2003;52(1):109–132.

    Article  MathSciNet  Google Scholar 

  7. Yang M, Chen W, Ding Y. Solutions for periodic Schrödinger equation with spectrum zero and general superlinear nonlinearities. J Math Anal Appl. 2010;364(2):404–413.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schechter, M. (2020). Zero in the Spectrum. In: Critical Point Theory. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-45603-0_8

Download citation

Publish with us

Policies and ethics