Skip to main content

Distributed Attack and Mitigation Strategies for Active Power Distribution Networks

  • Chapter
  • First Online:
Security of Cyber-Physical Systems

Abstract

The past decade has seen the rise of the number of attacking mechanisms that can penetrate the existing protections on the power networks (Chen and Abu-Nimeh, Computer 44(4): 91–93, 2011; McAfee White Paper, Global Energy Cyberattacks: Night Dragon. McAfee, 2011), as well as the first-ever attack on a national power grid (Ten et al., IEEE Trans Smart Grid 9(5): 4405–4425, 2018). To develop countering strategies for this mounting threat, it is important for us to explore various methods adversarial actors can use to compromise the network. In this chapter, we present a novel distributed attack algorithm that compromises Distribution Network (DN) operation through malicious, incremental actuation of distributed load elements in the network. Since incremental actuation increases the difficulty for the Electric Power Utility (EPU) to isolate the compromised components, this attack strategy is also stealthy. To mitigate this type of attack, we also introduce a distributed countermeasure strategy that suppresses the adverse effects of the proposed attack scheme via theoretical constructs from dual updates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.E. Baran, F.F. Wu, Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 4(1), 1401–1407 (1989)

    Google Scholar 

  2. M.E. Baran, F.F. Wu, Optimal capacitor placement of radial distribution systems. IEEE Trans. Power Deliv. 4(2), 725–734 (1989)

    Google Scholar 

  3. S.P. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  4. T.M. Chen, S. Abu-Nimeh, Lessons from Stuxnet. Computer 44(4), 91–93 (2011)

    Google Scholar 

  5. J. Chen, Q. Zhu, A Stackelberg game approach for two-level distributed energy management in smart grids. IEEE Trans. Smart Grid 9(6), 6554–6565 (2018)

    Google Scholar 

  6. K. Gai, M. Qiu, Z. Ming, H. Zhao, L. Qiu, Spoofing jamming attack strategy using optimal power distributions in wireless smart grid networks. IEEE Trans. Smart Grid 8(5), 431–2439 (2017)

    Google Scholar 

  7. L. Gan, S.H. Low, Convex relaxations and linear approximation for optimal power flow in multiphase radial networks, in Power Systems Computation Conference, Wroclaw (2014)

    Google Scholar 

  8. J.D. Glover, T.J. Overbye, M.S. Sarma, Power System Analysis and Design. (Cengage Learning, Boston, 2017)

    Google Scholar 

  9. V.C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, G.P. Hancke, Smart grid technologies: communication technologies and standards. IEEE Trans. Ind. Inf. 7(4), 529–539 (2011)

    Google Scholar 

  10. Y. He, G.J. Mendis, J. Wei, Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid 8(5), 21–32 (2017)

    Google Scholar 

  11. J. Joo, M.D. Ilic, Multi-layered optimization of demand resources using Lagrangian dual decomposition. IEEE Trans. Smart Grid 4(4), 2081–2088 (2013)

    Google Scholar 

  12. Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric power grids, in ACM Conference on Computer and Communications Security (2009), pp. 21–32

    Google Scholar 

  13. Y. Liu, H. Xin, Z. Qu, D. Gan, An attack-resilient cooperative control strategy of multiple distributed generators in distribution networks. IEEE Trans. Smart Grid 7(6), 2923–2932 (2016)

    Google Scholar 

  14. S. Low, Convex relaxation of optimal power flow part I: formulations and equivalence. IEEE Trans. Control Netw. Syst. 1(1), 15–27 (2014)

    MathSciNet  MATH  Google Scholar 

  15. J.R.S. Mantovani, F. Casari, R.A. Romero, Reconfiguração de sistemas de distribuição radiais utilizando o critério de queda de tensão, Revista Controle e Automação. Sociedade Brasileira de Au- tomática, SBA 11(3), 150–159 (2000)

    Google Scholar 

  16. McAfee White Paper, Global Energy Cyberattacks: Night Dragon. McAfee, 2011

    Google Scholar 

  17. U.K. Premaratne, J. Samarabandu, T.S. Sidhu, R. Beresh, J. Tan, An Intrusion detection system for IEC61850 automated substations. IEEE Trans. Power Deliv. 25(4), 2376–2383 (2010)

    Google Scholar 

  18. R. Rodrigo et al., Securing the Internet of Things. Computer 44(9), 51–58 (2011)

    Google Scholar 

  19. E. Ronen, A. Shamir, A.O. Weingarten, C. Oflynn, IoT goes nuclear: creating a ZigBee chain reaction, in IEEE Symposium on Security and Privacy (2017)

    Google Scholar 

  20. W.H. Sandholm, Economic Learning and Social Evolution: Population Games and Evolutionary Dynamics (MIT Press, Cambridge, 2011)

    Google Scholar 

  21. D. Shelar, S. Amin, Analyzing vulnerability of electricity distribution networks to DER disruptions, in 2015 American Control Conference (ACC) (2015)

    Google Scholar 

  22. P. Srikantha, D. Kundur, Denial of service attacks and mitigation for stability in cyber-enabled power grid, in IEEE PES & Innovative Smart Grid Technologies Conference (2015)

    Google Scholar 

  23. P. Srikantha, D. Kundur, Resilient distributed real-time demand response via population games. IEEE Trans. Smart Grid 8(6), 2532–2543 (2017)

    Google Scholar 

  24. C. Ten, K. Yamashita, Z. Yang, A. Vasilakos, A. Ginter. Impact assessment of hypothesized cyberattacks on interconnected bulk power systems. IEEE Trans. Smart Grid 9(5), 4405–4425 (2018)

    Google Scholar 

  25. Z. Yin, D. Korzhyk, C. Kiekintveld, V. Conitzer, M. Tambe, Stackelberg versus Nash in security games: interchangeability, equivalence, and uniqueness. J. Artif. Intell. Res. 41, 297–327 (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pirathayini Srikantha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Srikantha, P. (2020). Distributed Attack and Mitigation Strategies for Active Power Distribution Networks. In: Karimipour, H., Srikantha, P., Farag, H., Wei-Kocsis, J. (eds) Security of Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-45541-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45541-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45540-8

  • Online ISBN: 978-3-030-45541-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics