Skip to main content

Multi-Source Domain Adaptation by Deep CockTail Networks

  • 709 Accesses

Abstract

Regular domain adaptation (DA) problems are interested in source examples drawn from a single source distribution, yet they probably come from multiple source domains in reality. Compared with DAs, Multi-Source DA (MSDA) is more challenging to settle: The extra domain shifts exist between source domains and moreover, the multi-source domains may also disagree on their semantic information. In this section, we surveyed Deep CockTail Network (DCTN), a prevalent MSDA algorithm that battles the multi-source-derived domain and semantic shifts. The ideology behind is inspired by making cocktails with multiple kinds of stuff (i.e. sources in our background). In particular, DCTN replays two alternating learning phases: (1) DCTN goes through a multi-way adversarial DA process to minimize the domain discrepancy between the target and each source, in order to obtain domain-invariant features. In this process, each target example would lead to the source-specific perplexity scores, denoting how similar each target feature appears to a feature from one of the source domains. (2) Integrated with the perplexity scores, the multi-source category classifiers categorizes target samples, and the pseudo-labeled target samples and source samples jointly update the category classifiers and the feature extractor. In the empirical studies, DCTNs are evaluated in three domain adaptation benchmarks in vanilla and source-category-shift MSDA scenarios. The results thoroughly evidence the superiority of DCTN framework that resists negative transfers across domains and tasks.

Keywords

  • Multi-source domain adaptation
  • Cocktail network
  • Adversarial learning
  • Pseudo labels

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45529-3_12
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-45529-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6

Notes

  1. 1.

    Here perplexity scores are disconnected with the term used in natural language processing. In our chapter, they are completely determined by some relevant equations.

  2. 2.

    The pre-training process can be found in the original paper and the official code in.

  3. 3.

    Since each sample x corresponds to an unique class y, \(\{\mathcal {P}_{j}\}^M_{j=1}\) and \(\mathcal {P}_t\) can be viewed as an equivalent embedding from \(\{P_{j}(x,y)\}^N_{j=1}\) and P t(x, y) that we have discussed.

  4. 4.

    http://pytorch.org/.

  5. 5.

    http://imageclef.org/2014/adaptation.

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)

    MathSciNet  CrossRef  Google Scholar 

  2. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks (2016). Preprint. arXiv:1612.05424

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 248–255. IEEE, Piscataway (2009)

    Google Scholar 

  4. Duan, L., Xu, D., Tsang, I.W.H.: Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE Trans. Neural Netw. Learn. Syst. 23(3), 504–518 (2012)

    CrossRef  Google Scholar 

  5. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189 (2015)

    Google Scholar 

  6. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096–2030 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Gebru, T., Hoffman, J., Fei-Fei, L.: Fine-grained recognition in the wild: a multi-task domain adaptation approach (2017). Preprint. arXiv:1709.02476

    Google Scholar 

  8. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: European Conference on Computer Vision, pp. 597–613. Springer, Cham (2016)

    Google Scholar 

  9. Gong, B., Shi, Y., Sha, F., Grauman, K.: Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2066–2073. IEEE, Piscataway (2012)

    Google Scholar 

  10. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: An unsupervised approach. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 999–1006. IEEE, Piscataway (2011)

    Google Scholar 

  11. Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.: Covariate shift by kernel mean matching. Dataset Shift Mach. Learn. 3(4), 5 (2009)

    Google Scholar 

  12. Hoffman, J., Tzeng, E., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains and tasks. In: Domain Adaptation in Computer Vision Applications, pp. 173–187. Springer, Cham (2017)

    Google Scholar 

  13. Jhuo, I.H., Liu, D., Lee, D., Chang, S.F.: Robust visual domain adaptation with low-rank reconstruction. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2168–2175. IEEE, Piscataway (2012)

    Google Scholar 

  14. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L.J., Shamma, D.A.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017)

    MathSciNet  CrossRef  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    CrossRef  Google Scholar 

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 (2015)

    Google Scholar 

  19. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. In: Advances in Neural Information Processing Systems, pp. 136–144 (2016)

    Google Scholar 

  20. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2208–2217 (2017). http://JMLR.org

  21. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    Google Scholar 

  22. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation with multiple sources. In: Advances in Neural Information Processing Systems, pp. 1041–1048 (2009)

    Google Scholar 

  23. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning (2011)

    Google Scholar 

  24. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    CrossRef  Google Scholar 

  25. Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE Trans. Neural Netw. 22(2), 199–210 (2011)

    CrossRef  Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  27. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Computer Vision–ECCV 2010, pp. 213–226 (2010)

    Google Scholar 

  28. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation (2017). Preprint. arXiv:1702.08400

    Google Scholar 

  29. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation (2017). Preprint. arXiv:1702.05464

    Google Scholar 

  30. Xie, J., Hu, W., Zhu, S.C., Wu, Y.N.: Learning sparse frame models for natural image patterns. Int. J. Comput. Vis. 114(2–3), 91–112 (2015)

    MathSciNet  MATH  CrossRef  Google Scholar 

  31. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., Bengio, Y.: Show, attend and tell: neural image caption generation with visual attention. In: International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  32. Xu, R., Chen, Z., Zuo, W., Yan, J., Lin, L.: Deep cocktail network: multi-source unsupervised domain adaptation with category shift. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3964–3973 (2018)

    Google Scholar 

  33. Yang, J., Yan, R., Hauptmann, A.G.: Cross-domain video concept detection using adaptive svms. In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 188–197. ACM, New York (2007)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the other authors, i.e., Ruijia Xu, Wangmeng Zuo and Junjie Yan, for their contribution to the original paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Chen, Z., Lin, L. (2020). Multi-Source Domain Adaptation by Deep CockTail Networks. In: Venkateswara, H., Panchanathan, S. (eds) Domain Adaptation in Computer Vision with Deep Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-45529-3_12

Download citation