Skip to main content

Neural Bases of Financial Decision Making: From Spikes to Large-Scale Brain Connectivity

Abstract

The human brain is able to perceive and retrieve different pieces of information, to integrate them by weighing their relative importance, and to initiate informed actions. Therefore, we can see our brain as an extremely powerful information processing and prediction machine, allowing us to make complex financial decisions. From a neural perspective, decision making is investigated on different levels. While some neuroeconomists aim to understand the relationship between single-cell activity, utility, and choices, others focus on the joint activity of entire neuronal populations within a brain region, as well as the interaction of different brain regions in decision making. In this chapter, we aim to give an overview of several approaches to the investigation of neural activity and its relation to financial decision making. We start by outlining the basic principles of neural information processing and continue by presenting the most important methods applied in neuroeconomics. Then we discuss the crucial role of the reward system in mediating financial decision making. Finally, we describe a computational framework that provides a psychologically as well as neurobiologically plausible account of how decisions emerge in the brain.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45500-2_1
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-45500-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2

References

  • Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences, 25(12), 621–625.

    CrossRef  PubMed  Google Scholar 

  • Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. L., Leite, R. E. P., … Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5), 532–541.

    CrossRef  PubMed  Google Scholar 

  • Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47(1), 129–141.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Berger, H. (1929). Uber das Elektrenkephalogramm des Menschen, 2nd report. Archiv für Psychiatrie und Nervenkrankheiten, 87(1), 527–570.

    CrossRef  Google Scholar 

  • Berke, J. D. (2018). What does dopamine mean? Nature Neuroscience, 21(6), 787–793.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700–765.

    CrossRef  PubMed  Google Scholar 

  • Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013). Rats and humans can optimally accumulate evidence for decision-making. Science, 340(6128), 95–98.

    CrossRef  PubMed  Google Scholar 

  • Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M. (2019). Cognitive and neural bases of multi-attribute, multi-alternative, value-based decisions. Trends in Cognitive Sciences, 23(3), 251–263.

    CrossRef  PubMed  Google Scholar 

  • Cohen, M. X. (2014). Analyzing neural time series data.

    CrossRef  Google Scholar 

  • D’Ardenne, K., McClure, S. M., Nystrom, L. E., & Cohen, J. D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science, 319(5867), 1264–1267.

    CrossRef  PubMed  Google Scholar 

  • Fiorillo, C. D., Newsome, W. T., & Schultz, W. (2008). The temporal precision of reward prediction in dopamine neurons. Nature Neuroscience, 11(8), 966–973.

    CrossRef  PubMed  Google Scholar 

  • Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward dopamine neurons. Science, 299(March), 1898–1902.

    CrossRef  PubMed  Google Scholar 

  • Fontanesi, L., Gluth, S., Spektor, M. S., & Rieskamp, J. (2019). A reinforcement learning diffusion decision model for value-based decisions. Psychonomic Bulletin & Review, 26, 1099.

    CrossRef  Google Scholar 

  • Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6(3), 218–229.

    CrossRef  PubMed  Google Scholar 

  • Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302.

    CrossRef  PubMed  Google Scholar 

  • Gershman, S. J., & Uchida, N. (2019). Believing in dopamine. Nature Reviews Neuroscience, 20, 703.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gluth, S., Rieskamp, J., & Büchel, C. (2012). Deciding when to decide: Time-variant sequential sampling models explain the emergence of value-based decisions in the human brain. Journal of Neuroscience, 32(31), 10686–10698.

    CrossRef  PubMed  Google Scholar 

  • Gluth, S., Rieskamp, J., & Büchel, C. (2013a). Classic EEG motor potentials track the emergence of value-based decisions. NeuroImage, 79, 394–403.

    CrossRef  PubMed  Google Scholar 

  • Gluth, S., Rieskamp, J., & Büchel, C. (2013b). Deciding not to decide: Computational and neural evidence for hidden behavior in sequential choice. PLoS Computational Biology, 9(10), e1003309.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574.

    CrossRef  PubMed  Google Scholar 

  • Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., … Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation, 5(1), 25.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Haber, S. N., & Behrens, T. E. J. (2014). The neural network underlying incentive-based learning: Implications for interpreting circuit disruptions in psychiatric disorders. Neuron, 83(5), 1019–1039.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Haber, S. N., & Knutson, B. (2009). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(10), 4–26.

    PubMed Central  Google Scholar 

  • Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 859–862.

    CrossRef  PubMed  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Huettel, S. A., Song, A. W., & McCarthy, G. (2014). Functional magnetic resonance imaging. In Springer reference (3rd ed.). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Hunt, L. T., Kolling, N., Soltani, A., Woolrich, M. W., Rushworth, M. F. S., & Behrens, T. E. J. (2012). Mechanisms underlying cortical activity during value-guided choice. Nature Neuroscience, 15(3), 470–479.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Iadecola, C., Yang, G., Ebner, T. J., & Chen, G. (1997). Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. Journal of Neurophysiology, 78(2), 651–659.

    CrossRef  PubMed  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–292.

    CrossRef  Google Scholar 

  • Klein, M. O., Battagello, D. S., Cardoso, A. R., Hauser, D. N., Bittencourt, J. C., & Correa, R. G. (2019). Dopamine: Functions, signaling, and association with neurological diseases. Cellular and Molecular Neurobiology, 39(1), 31–59.

    CrossRef  PubMed  Google Scholar 

  • Kornhuber, H. H., & Deecke, L. (1965/2016). Brain potential changes in voluntary and passive movements in humans: Readiness potential and reafferent potentials. Pflugers Archiv European Journal of Physiology, 468(7), 1115–1124.

    CrossRef  Google Scholar 

  • Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C., & Pillow, J. W. (2015). Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science, 349(6244), 184–187.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Logothetis, N. K., Auguth, M., Oeltermann, A., Pauls, J., & Trinath, T. (2001). A neurophysiological investigation of the basis of the BOLD signal in fMRI. Nature, 412(6843), 150–157.

    CrossRef  PubMed  Google Scholar 

  • Luck, S. J. (2014). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.

    Google Scholar 

  • O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329–337.

    CrossRef  PubMed  Google Scholar 

  • Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M. J., Jørgen, H., Gundersen, G., … Regeur, L. (2003). Aging and the human neocortex. Experimental Gerontology, 38, 95–99.

    CrossRef  PubMed  Google Scholar 

  • Pisauro, M. A., Fouragnan, E., Retzler, C., & Philiastides, M. G. (2017). Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI. Nature Communications, 8, 15808.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Polanía, R., Krajbich, I., Grueschow, M., & Ruff, C. C. (2014). Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. Neuron, 82(3), 709–720.

    CrossRef  PubMed  Google Scholar 

  • Ruff, C. C., & Huettel, S. A. (2014). Experimental methods in cognitive neuroscience. In Neuroeconomics (pp. 77–108).

    CrossRef  Google Scholar 

  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.

    CrossRef  PubMed  Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1996). Motion perception: Seeing and deciding. Proceedings of the National Academy of Sciences, USA, 93(2), 628–633.

    CrossRef  Google Scholar 

  • Smith, Y., Wichmann, T., & Delong, M. R. (2014). Corticostriatal and mesocortical dopamine systems: Do species differences matter? Nature Reviews Neuroscience, 15(1), 63.

    CrossRef  PubMed  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054–1054.

    CrossRef  Google Scholar 

  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.

    CrossRef  Google Scholar 

  • Von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior (2nd ed.). Princeton, N.J.; Woodstock: Princeton University Press.

    Google Scholar 

  • Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36(5), 955–968.

    CrossRef  PubMed  Google Scholar 

  • Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5(6), 483–494.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Gluth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kraemer, P.M., Weilbächer, R.A., Fontanesi, L., Gluth, S. (2020). Neural Bases of Financial Decision Making: From Spikes to Large-Scale Brain Connectivity. In: Zaleskiewicz, T., Traczyk, J. (eds) Psychological Perspectives on Financial Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-030-45500-2_1

Download citation