Abstract
The human brain is able to perceive and retrieve different pieces of information, to integrate them by weighing their relative importance, and to initiate informed actions. Therefore, we can see our brain as an extremely powerful information processing and prediction machine, allowing us to make complex financial decisions. From a neural perspective, decision making is investigated on different levels. While some neuroeconomists aim to understand the relationship between single-cell activity, utility, and choices, others focus on the joint activity of entire neuronal populations within a brain region, as well as the interaction of different brain regions in decision making. In this chapter, we aim to give an overview of several approaches to the investigation of neural activity and its relation to financial decision making. We start by outlining the basic principles of neural information processing and continue by presenting the most important methods applied in neuroeconomics. Then we discuss the crucial role of the reward system in mediating financial decision making. Finally, we describe a computational framework that provides a psychologically as well as neurobiologically plausible account of how decisions emerge in the brain.
This is a preview of subscription content, access via your institution.
Buying options


References
Attwell, D., & Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends in Neurosciences, 25(12), 621–625.
Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. L., Leite, R. E. P., … Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5), 532–541.
Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47(1), 129–141.
Berger, H. (1929). Uber das Elektrenkephalogramm des Menschen, 2nd report. Archiv für Psychiatrie und Nervenkrankheiten, 87(1), 527–570.
Berke, J. D. (2018). What does dopamine mean? Nature Neuroscience, 21(6), 787–793.
Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks. Psychological Review, 113(4), 700–765.
Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013). Rats and humans can optimally accumulate evidence for decision-making. Science, 340(6128), 95–98.
Busemeyer, J. R., Gluth, S., Rieskamp, J., & Turner, B. M. (2019). Cognitive and neural bases of multi-attribute, multi-alternative, value-based decisions. Trends in Cognitive Sciences, 23(3), 251–263.
Cohen, M. X. (2014). Analyzing neural time series data.
D’Ardenne, K., McClure, S. M., Nystrom, L. E., & Cohen, J. D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science, 319(5867), 1264–1267.
Fiorillo, C. D., Newsome, W. T., & Schultz, W. (2008). The temporal precision of reward prediction in dopamine neurons. Nature Neuroscience, 11(8), 966–973.
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward dopamine neurons. Science, 299(March), 1898–1902.
Fontanesi, L., Gluth, S., Spektor, M. S., & Rieskamp, J. (2019). A reinforcement learning diffusion decision model for value-based decisions. Psychonomic Bulletin & Review, 26, 1099.
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6(3), 218–229.
Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302.
Gershman, S. J., & Uchida, N. (2019). Believing in dopamine. Nature Reviews Neuroscience, 20, 703.
Gluth, S., Rieskamp, J., & Büchel, C. (2012). Deciding when to decide: Time-variant sequential sampling models explain the emergence of value-based decisions in the human brain. Journal of Neuroscience, 32(31), 10686–10698.
Gluth, S., Rieskamp, J., & Büchel, C. (2013a). Classic EEG motor potentials track the emergence of value-based decisions. NeuroImage, 79, 394–403.
Gluth, S., Rieskamp, J., & Büchel, C. (2013b). Deciding not to decide: Computational and neural evidence for hidden behavior in sequential choice. PLoS Computational Biology, 9(10), e1003309.
Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574.
Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., … Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation, 5(1), 25.
Haber, S. N., & Behrens, T. E. J. (2014). The neural network underlying incentive-based learning: Implications for interpreting circuit disruptions in psychiatric disorders. Neuron, 83(5), 1019–1039.
Haber, S. N., & Knutson, B. (2009). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(10), 4–26.
Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 859–862.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117, 500–544.
Huettel, S. A., Song, A. W., & McCarthy, G. (2014). Functional magnetic resonance imaging. In Springer reference (3rd ed.). Sunderland, MA: Sinauer Associates.
Hunt, L. T., Kolling, N., Soltani, A., Woolrich, M. W., Rushworth, M. F. S., & Behrens, T. E. J. (2012). Mechanisms underlying cortical activity during value-guided choice. Nature Neuroscience, 15(3), 470–479.
Iadecola, C., Yang, G., Ebner, T. J., & Chen, G. (1997). Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. Journal of Neurophysiology, 78(2), 651–659.
Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–292.
Klein, M. O., Battagello, D. S., Cardoso, A. R., Hauser, D. N., Bittencourt, J. C., & Correa, R. G. (2019). Dopamine: Functions, signaling, and association with neurological diseases. Cellular and Molecular Neurobiology, 39(1), 31–59.
Kornhuber, H. H., & Deecke, L. (1965/2016). Brain potential changes in voluntary and passive movements in humans: Readiness potential and reafferent potentials. Pflugers Archiv European Journal of Physiology, 468(7), 1115–1124.
Latimer, K. W., Yates, J. L., Meister, M. L. R., Huk, A. C., & Pillow, J. W. (2015). Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science, 349(6244), 184–187.
Logothetis, N. K., Auguth, M., Oeltermann, A., Pauls, J., & Trinath, T. (2001). A neurophysiological investigation of the basis of the BOLD signal in fMRI. Nature, 412(6843), 150–157.
Luck, S. J. (2014). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.
O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329–337.
Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M. J., Jørgen, H., Gundersen, G., … Regeur, L. (2003). Aging and the human neocortex. Experimental Gerontology, 38, 95–99.
Pisauro, M. A., Fouragnan, E., Retzler, C., & Philiastides, M. G. (2017). Neural correlates of evidence accumulation during value-based decisions revealed via simultaneous EEG-fMRI. Nature Communications, 8, 15808.
Polanía, R., Krajbich, I., Grueschow, M., & Ruff, C. C. (2014). Neural oscillations and synchronization differentially support evidence accumulation in perceptual and value-based decision making. Neuron, 82(3), 709–720.
Ruff, C. C., & Huettel, S. A. (2014). Experimental methods in cognitive neuroscience. In Neuroeconomics (pp. 77–108).
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.
Shadlen, M. N., & Newsome, W. T. (1996). Motion perception: Seeing and deciding. Proceedings of the National Academy of Sciences, USA, 93(2), 628–633.
Smith, Y., Wichmann, T., & Delong, M. R. (2014). Corticostriatal and mesocortical dopamine systems: Do species differences matter? Nature Reviews Neuroscience, 15(1), 63.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054–1054.
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.
Von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior (2nd ed.). Princeton, N.J.; Woodstock: Princeton University Press.
Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36(5), 955–968.
Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5(6), 483–494.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kraemer, P.M., Weilbächer, R.A., Fontanesi, L., Gluth, S. (2020). Neural Bases of Financial Decision Making: From Spikes to Large-Scale Brain Connectivity. In: Zaleskiewicz, T., Traczyk, J. (eds) Psychological Perspectives on Financial Decision Making. Springer, Cham. https://doi.org/10.1007/978-3-030-45500-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-45500-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45499-9
Online ISBN: 978-3-030-45500-2
eBook Packages: Behavioral Science and PsychologyBehavioral Science and Psychology (R0)