Skip to main content

Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders

  • Chapter
  • First Online:
Neurodevelopmental Disorders

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 25))

Abstract

Psychiatric disorders are among the most challenging human diseases to understand at a mechanistic level due to the heterogeneity of symptoms within established diagnostic categories, the general absence of focal pathology, and the genetic complexity inherent in these mostly polygenic disorders. Each of these features presents unique challenges to disease modeling for biological discovery, drug development, or improved diagnostics. In addition, live human neural tissue has been largely inaccessible to experimentation, leaving gaps in our knowledge derived from animal models that cannot fully recapitulate the features of the disease, indirect measures of brain function in human patients, and from analyses of postmortem tissue that can be confounded by comorbid conditions and medication history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    CAS  PubMed  Google Scholar 

  2. Marchetto, M. C., Carromeu, C., Acab, A., Yu, D., Yeo, G. W., Mu, Y., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4), 527–539.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sheridan, S. D., Theriault, K. M., Reis, S. A., Zhou, F., Madison, J. M., Daheron, L., et al. (2011). Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One, 6(10), e26203.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Barakat, T. S., Ghazvini, M., de Hoon, B., Li, T., Eussen, B., Douben, H., et al. (2015). Stable X chromosome reactivation in female human induced pluripotent stem cells. Stem Cell Reports, 4(2), 199–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tchieu, J., Kuoy, E., Chin, M. H., Trinh, H., Patterson, M., Sherman, S. P., et al. (2010). Female human iPSCs retain an inactive X chromosome. Cell Stem Cell, 7(3), 329–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Doers, M. E., Musser, M. T., Nichol, R., Berndt, E. R., Baker, M., Gomez, T. M., et al. (2014). iPSC-derived forebrain neurons from FXS individuals show defects in initial neurite outgrowth. Stem Cells and Development, 23(15), 1777–1787.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Telias, M., Kuznitsov-Yanovsky, L., Segal, M., & Ben-Yosef, D. (2015). Functional deficiencies in fragile X neurons derived from human embryonic stem cells. The Journal of Neuroscience, 35(46), 15295–15306.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Telias, M., Segal, M., & Ben-Yosef, D. (2013). Neural differentiation of Fragile X human embryonic stem cells reveals abnormal patterns of development despite successful neurogenesis. Developmental Biology, 374(1), 32–45.

    CAS  PubMed  Google Scholar 

  9. Telias, M., Segal, M., & Ben-Yosef, D. (2016). Immature responses to GABA in fragile X neurons derived from human embryonic stem cells. Frontiers in Cellular Neuroscience, 10, 121.

    PubMed  PubMed Central  Google Scholar 

  10. Zhang, Z., Marro, S. G., Zhang, Y., Arendt, K. L., Patzke, C., Zhou, B., et al. (2018). The fragile X mutation impairs homeostatic plasticity in human neurons by blocking synaptic retinoic acid signaling. Science Translational Medicine, 10, 452.

    Google Scholar 

  11. Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Borglum, A. D., Breen, G., et al. (2018). Psychiatric genomics: An update and an agenda. The American Journal of Psychiatry, 175(1), 15–27.

    PubMed  Google Scholar 

  12. Bergen, S. E., Ploner, A., Howrigan, D., O’Donovan, M. C., Group CNVA, The Schizophrenia Working Group of the Psychiatric Genomics C, et al. (2019). Joint contributions of rare copy number variants and common SNPs to risk for schizophrenia. The American Journal of Psychiatry, 176(1), 29–35.

    PubMed  Google Scholar 

  13. Malhotra, D., & Sebat, J. (2012). CNVs: Harbingers of a rare variant revolution in psychiatric genetics. Cell, 148(6), 1223–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, A., Ching, C. R. K., Vajdi, A., Sun, D., Jonas, R. K., Jalbrzikowski, M., et al. (2017). Mapping 22q11.2 gene dosage effects on brain morphometry. The Journal of Neuroscience, 37(26), 6183–6199.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Crespi, B. J., & Crofts, H. J. (2012). Association testing of copy number variants in schizophrenia and autism spectrum disorders. Journal of Neurodevelopmental Disorders, 4(1), 15.

    PubMed  PubMed Central  Google Scholar 

  16. Brennand, K. J., Simone, A., Jou, J., Gelboin-Burkhart, C., Tran, N., Sangar, S., et al. (2011). Modelling schizophrenia using human induced pluripotent stem cells. Nature, 473(7346), 221–225.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiang, C. H., Su, Y., Wen, Z., Yoritomo, N., Ross, C. A., Margolis, R. L., et al. (2011). Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Molecular Psychiatry, 16(4), 358–360.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sachs, N. A., Sawa, A., Holmes, S. E., Ross, C. A., DeLisi, L. E., & Margolis, R. L. (2005). A frameshift mutation in disrupted in schizophrenia 1 in an American family with schizophrenia and schizoaffective disorder. Molecular Psychiatry, 10(8), 758–764.

    CAS  PubMed  Google Scholar 

  19. Wen, Z., Nguyen, H. N., Guo, Z., Lalli, M. A., Wang, X., Su, Y., et al. (2014). Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 515(7527), 414–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, D. X., Di Giorgio, F. P., Yao, J., Marchetto, M. C., Brennand, K., Wright, R., et al. (2014). Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Reports, 2(3), 295–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yoon, K. J., Nguyen, H. N., Ursini, G., Zhang, F., Kim, N. S., Wen, Z., et al. (2014). Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell, 15(1), 79–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Brugger, S. P., & Howes, O. D. (2017). Heterogeneity and homogeneity of regional brain structure in schizophrenia: A meta-analysis. JAMA Psychiatry, 74(11), 1104–1111.

    PubMed  PubMed Central  Google Scholar 

  23. Stoner, R., Chow, M. L., Boyle, M. P., Sunkin, S. M., Mouton, P. R., Roy, S., et al. (2014). Patches of disorganization in the neocortex of children with autism. The New England Journal of Medicine, 370(13), 1209–1219.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mertens, J., Wang, Q. W., Kim, Y., Yu, D. X., Pham, S., Yang, B., et al. (2015). Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 527(7576), 95–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vadodaria, K. C., Ji, Y., Skime, M., Paquola, A., Nelson, T., Hall-Flavin, D., et al. (2019). Serotonin-induced hyperactivity in SSRI-resistant major depressive disorder patient-derived neurons. Molecular Psychiatry, 24(6), 795–807.

    CAS  PubMed  Google Scholar 

  26. Mertens, J., Marchetto, M. C., Bardy, C., & Gage, F. H. (2016). Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nature Reviews. Neuroscience, 17(7), 424–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Soliman, M. A., Aboharb, F., Zeltner, N., & Studer, L. (2017). Pluripotent stem cells in neuropsychiatric disorders. Molecular Psychiatry, 22(9), 1241–1249.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tasic, B., Menon, V., Nguyen, T. N., Kim, T. K., Jarsky, T., Yao, Z., et al. (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 19(2), 335–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Holguera, I., & Desplan, C. (2018). Neuronal specification in space and time. Science, 362(6411), 176–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spitzer, N. C. (2017). Neurotransmitter switching in the developing and adult brain. Annual Review of Neuroscience, 40, 1–19.

    CAS  PubMed  Google Scholar 

  31. Porteous, D. J., Millar, J. K., Brandon, N. J., & Sawa, A. (2011). DISC1 at 10: Connecting psychiatric genetics and neuroscience. Trends in Molecular Medicine, 17(12), 699–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilkinson, B., Evgrafov, O. V., Zheng, D., Hartel, N., Knowles, J. A., Graham, N. A., et al. (2019). Endogenous cell type-specific disrupted in schizophrenia 1 interactomes reveal protein networks associated with neurodevelopmental disorders. Biological Psychiatry, 85(4), 305–316.

    CAS  PubMed  Google Scholar 

  33. Shao, Z., Noh, H., Bin Kim, W., Ni, P., Nguyen, C., Cote, S. E., et al. (2019). Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell-derived cortical interneurons from subjects with schizophrenia. Nature Neuroscience, 22(2), 229–242.

    PubMed  PubMed Central  Google Scholar 

  34. Sarkar, A., Mei, A., Paquola, A. C. M., Stern, S., Bardy, C., Klug, J. R., et al. (2018). Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell, 22(5), 684–697.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cannon, T. D., Chung, Y., He, G., Sun, D., Jacobson, A., van Erp, T. G., et al. (2015). Progressive reduction in cortical thickness as psychosis develops: A multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biological Psychiatry, 77(2), 147–157.

    PubMed  Google Scholar 

  36. Cropley, V. L., Klauser, P., Lenroot, R. K., Bruggemann, J., Sundram, S., Bousman, C., et al. (2017). Accelerated gray and white matter deterioration with age in schizophrenia. The American Journal of Psychiatry, 174(3), 286–295.

    PubMed  Google Scholar 

  37. McPhie, D. L., Nehme, R., Ravichandran, C., Babb, S. M., Ghosh, S. D., Staskus, A., et al. (2018). Oligodendrocyte differentiation of induced pluripotent stem cells derived from subjects with schizophrenias implicate abnormalities in development. Translational Psychiatry, 8(1), 230.

    PubMed  PubMed Central  Google Scholar 

  38. Freitas, B. C., Trujillo, C. A., Carromeu, C., Yusupova, M., Herai, R. H., & Muotri, A. R. (2014). Stem cells and modeling of autism spectrum disorders. Experimental Neurology, 260, 33–43.

    PubMed  Google Scholar 

  39. Pasca, S. P., Portmann, T., Voineagu, I., Yazawa, M., Shcheglovitov, A., Pasca, A. M., et al. (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 17(12), 1657–1662.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pagnozzi, A. M., Conti, E., Calderoni, S., Fripp, J., & Rose, S. E. (2018). A systematic review of structural MRI biomarkers in autism spectrum disorder: A machine learning perspective. International Journal of Developmental Neuroscience, 71, 68–82.

    PubMed  Google Scholar 

  41. Xue, Y., Zhan, X., Sun, S., Karuppagounder, S. S., Xia, S., Dawson, V. L., et al. (2019). Synthetic mRNAs drive highly efficient iPS cell differentiation to dopaminergic neurons. Stem Cells Translational Medicine, 8(2), 112–123.

    CAS  PubMed  Google Scholar 

  42. Cobb, M. M., Ravisankar, A., Skibinski, G., & Finkbeiner, S. (2018). iPS cells in the study of PD molecular pathogenesis. Cell and Tissue Research, 373(1), 61–77.

    CAS  PubMed  Google Scholar 

  43. Yan, Y., Yang, D., Zarnowska, E. D., Du, Z., Werbel, B., Valliere, C., et al. (2005). Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells, 23(6), 781–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. McCutcheon, R. A., Abi-Dargham, A., & Howes, O. D. (2019). Schizophrenia, dopamine and the striatum: from biology to symptoms. Trends in Neurosciences, 42(3), 205–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tao, Y., & Zhang, S. C. (2016). Neural subtype specification from human pluripotent stem cells. Cell Stem Cell, 19(5), 573–586.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu, Y., Liu, H., Sauvey, C., Yao, L., Zarnowska, E. D., & Zhang, S. C. (2013). Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nature Protocols, 8(9), 1670–1679.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ferguson, B. R., & Gao, W. J. (2018). PV interneurons: Critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Frontiers in Neural Circuits, 12, 37.

    PubMed  PubMed Central  Google Scholar 

  48. Volk, D. W., Sampson, A. R., Zhang, Y., Edelson, J. R., & Lewis, D. A. (2016). Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders. Psychological Medicine, 46(12), 2501–2512.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, L., Meece, K., Williams, D. J., Lo, K. A., Zimmer, M., Heinrich, G., et al. (2015). Differentiation of hypothalamic-like neurons from human pluripotent stem cells. The Journal of Clinical Investigation, 125(2), 796–808.

    PubMed  PubMed Central  Google Scholar 

  50. Wang, L., Egli, D., & Leibel, R. L. (2016). Efficient generation of hypothalamic neurons from human pluripotent stem cells. Current Protocols in Human Genetics, 90, 21.

    PubMed  PubMed Central  Google Scholar 

  51. Merkle, F. T., Maroof, A., Wataya, T., Sasai, Y., Studer, L., Eggan, K., et al. (2015). Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development, 142(4), 633–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu, Y., Qu, Z. Y., Cao, S. Y., Li, Q., Ma, L., Krencik, R., et al. (2016). Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells. Journal of Neuroscience Methods, 266, 42–49.

    CAS  PubMed  Google Scholar 

  53. Zheng, W., Li, Q., Zhao, C., Da, Y., Zhang, H. L., & Chen, Z. (2018). Differentiation of glial cells from hiPSCs: Potential applications in neurological diseases and cell replacement therapy. Frontiers in Cellular Neuroscience, 12, 239.

    PubMed  PubMed Central  Google Scholar 

  54. Tang, X., Kim, J., Zhou, L., Wengert, E., Zhang, L., Wu, Z., et al. (2016). KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 751–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sherman, S. P., & Bang, A. G. (2018). High-throughput screen for compounds that modulate neurite growth of human induced pluripotent stem cell-derived neurons. Disease Models & Mechanisms, 11, 2.

    Google Scholar 

  56. Darville, H., Poulet, A., Rodet-Amsellem, F., Chatrousse, L., Pernelle, J., Boissart, C., et al. (2016). Human pluripotent stem cell-derived cortical neurons for high throughput medication screening in autism: A proof of concept study in SHANK3 haploinsufficiency syndrome. eBioMedicine, 9, 293–305.

    PubMed  PubMed Central  Google Scholar 

  57. Kumari, D., Swaroop, M., Southall, N., Huang, W., Zheng, W., & Usdin, K. (2015). High-throughput screening to identify compounds that increase fragile X mental retardation protein expression in neural stem cells differentiated from fragile X syndrome patient-derived induced pluripotent stem cells. Stem Cells Translational Medicine, 4(7), 800–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373–379.

    CAS  PubMed  Google Scholar 

  59. Amin, N. D., & Pasca, S. P. (2018). Building models of brain disorders with three-dimensional organoids. Neuron, 100(2), 389–405.

    CAS  PubMed  Google Scholar 

  60. Qian, X., Jacob, F., Song, M. M., Nguyen, H. N., Song, H., & Ming, G. L. (2018). Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nature Protocols, 13(3), 565–580.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., et al. (2016). Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell, 165(5), 1238–1254.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., & Sasai, Y. (2015). Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Reports, 10(4), 537–550.

    CAS  PubMed  Google Scholar 

  63. Sakaguchi, H., Kadoshima, T., Soen, M., Narii, N., Ishida, Y., Ohgushi, M., et al. (2015). Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nature Communications, 6, 8896.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jo, J., Xiao, Y., Sun, A. X., Cukuroglu, E., Tran, H. D., Goke, J., et al. (2016). Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell, 19(2), 248–257.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Monzel, A. S., Smits, L. M., Hemmer, K., Hachi, S., Moreno, E. L., van Wuellen, T., et al. (2017). Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Reports, 8(5), 1144–1154.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kawada, J., Kaneda, S., Kirihara, T., Maroof, A., Levi, T., Eggan, K., et al. (2017). Generation of a motor nerve organoid with human stem cell-derived neurons. Stem Cell Reports, 9(5), 1441–1449.

    PubMed  PubMed Central  Google Scholar 

  67. Sloan, S. A., Andersen, J., Pasca, A. M., Birey, F., & Pasca, S. P. (2018). Generation and assembly of human brain region-specific three-dimensional cultures. Nature Protocols, 13(9), 2062–2085.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bagley, J. A., Reumann, D., Bian, S., Levi-Strauss, J., & Knoblich, J. A. (2017). Fused cerebral organoids model interactions between brain regions. Nature Methods, 14(7), 743–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Niarchou, M., Chawner, S., Doherty, J. L., Maillard, A. M., Jacquemont, S., Chung, W. K., et al. (2019). Psychiatric disorders in children with 16p11.2 deletion and duplication. Translational Psychiatry, 9(1), 8.

    PubMed  PubMed Central  Google Scholar 

  70. Sonderby, I. E., Gustafsson, O., Doan, N. T., Hibar, D. P., Martin-Brevet, S., Abdellaoui, A., et al. (2018). Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Molecular Psychiatry, 25(3), 584–602.

    PubMed  PubMed Central  Google Scholar 

  71. Johnstone, M., Vasistha, N. A., Barbu, M. C., Dando, O., Burr, K., Christopher, E., et al. (2019). Reversal of proliferation deficits caused by chromosome 16p13.11 microduplication through targeting NFkappaB signaling: an integrated study of patient-derived neuronal precursor cells, cerebral organoids and in vivo brain imaging. Molecular Psychiatry, 24(2), 294–311.

    CAS  PubMed  Google Scholar 

  72. Kadumuri, R. V., & Janga, S. C. (2018). Epitranscriptomic code and its alterations in human disease. Trends in Molecular Medicine, 24(10), 886–903.

    CAS  PubMed  Google Scholar 

  73. Rizzardi, L. F., Hickey, P. F., Rodriguez DiBlasi, V., Tryggvadottir, R., Callahan, C. M., Idrizi, A., et al. (2019). Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Nature Neuroscience, 22(2), 307–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Rajarajan, P., Borrman, T., Liao, W., Schrode, N., Flaherty, E., Casino, C., et al. (2018). Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science, 362, 6420.

    Google Scholar 

  75. Luo, C., Lancaster, M. A., Castanon, R., Nery, J. R., Knoblich, J. A., & Ecker, J. R. (2016). Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Reports, 17(12), 3369–3384.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fettes, P., Schulze, L., & Downar, J. (2017). Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: Promising therapeutic targets in psychiatric illness. Frontiers in Systems Neuroscience, 11, 25.

    PubMed  PubMed Central  Google Scholar 

  77. Birey, F., Andersen, J., Makinson, C. D., Islam, S., Wei, W., Huber, N., et al. (2017). Assembly of functionally integrated human forebrain spheroids. Nature, 545(7652), 54–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mansour, A. A., Goncalves, J. T., Bloyd, C. W., Li, H., Fernandes, S., Quang, D., et al. (2018). An in vivo model of functional and vascularized human brain organoids. Nature Biotechnology, 36(5), 432–441.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sloan, S. A., Darmanis, S., Huber, N., Khan, T. A., Birey, F., Caneda, C., et al. (2017). Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron, 95(4), 779–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Marton, R. M., Miura, Y., Sloan, S. A., Li, Q., Revah, O., Levy, R. J., et al. (2019). Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nature Neuroscience, 22(3), 484–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Salam, A. P., Borsini, A., & Zunszain, P. A. (2018). Trained innate immunity: A salient factor in the pathogenesis of neuroimmune psychiatric disorders. Molecular Psychiatry, 23(2), 170–176.

    CAS  PubMed  Google Scholar 

  82. Muffat, J., Li, Y., Yuan, B., Mitalipova, M., Omer, A., Corcoran, S., et al. (2016). Efficient derivation of microglia-like cells from human pluripotent stem cells. Nature Medicine, 22(11), 1358–1367.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ross, C. A., & Margolis, R. L. (2018). Research domain criteria: Cutting edge neuroscience or Galen’s humors revisited? Molecular Neuropsychiatry, 4(3), 158–163.

    PubMed  PubMed Central  Google Scholar 

  84. Quadrato, G., Nguyen, T., Macosko, E. Z., Sherwood, J. L., Min Yang, S., Berger, D. R., et al. (2017). Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 545(7652), 48–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bangasser, D. A., & Valentino, R. J. (2014). Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Frontiers in Neuroendocrinology, 35(3), 303–319.

    PubMed  PubMed Central  Google Scholar 

  86. Tiwari, A., & Gonzalez, A. (2018). Biological alterations affecting risk of adult psychopathology following childhood trauma: A review of sex differences. Clinical Psychology Review, 66, 69–79.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly M. Christian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christian, K.M., Song, H., Ming, Gl. (2020). Using Two- and Three-Dimensional Human iPSC Culture Systems to Model Psychiatric Disorders. In: DiCicco-Bloom, E., Millonig, J. (eds) Neurodevelopmental Disorders . Advances in Neurobiology, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-45493-7_9

Download citation

Publish with us

Policies and ethics