Skip to main content

Graphitic Carbon Nitride/Metal Oxides Nanocomposites and Their Applications in Engineering

  • Chapter
  • First Online:
Composite Materials: Applications in Engineering, Biomedicine and Food Science

Abstract

In recent decades, an intriguing two-dimensional polymeric graphitic carbon nitride has drawn significant multidisciplinary research consideration due to its captivating properties. It is an intriguing earth abundant, low cost, indirect semiconductor having fascinating layered structure similar to graphite with bandgap (2.7 eV), high physiochemical stability and visible-light absorption ability. So, it acts like a visible light driven photocatalyst. However, g-C3N4 in its pure form possesses few constraints like quick recombination of photogenerated electron-hole pairs, poor electrical conductivity and serious irreversible capacity loss which hinders its practical applications. Various categories of g-C3N4 based materials with improved performance were therefore extensively studied over the past few years. This chapter primarily presents g-C3N4 based composite materials including carbon/g-C3N4, metal/g-C3N4 and especially an elaborate discussion about metal oxide-graphitic carbon nitride composites and their applications in various aspects of engineering. In addition, it also includes historical development, future prospects and challenges regarding g-C3N4 and their composites for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CTL:

Cataluminescence

CV:

Cyclic voltammetry

DFT:

Density functional theory

DPV:

Differential pulse voltammetry

EDLC:

Electrochemical double layer capacitor

FESEM:

Field emission scanning electron microscopy

GCE:

Glassy carbon electrode

HRTEM:

High resolution transmission electron microscopy

LIBs:

Lithium ion batteries

MB:

Methylene Blue

MO:

Metal Oxide

OER:

Oxygen evolution reaction

ORR:

Oxygen reduction reaction

PEC:

Photoelectrocatalysis

PL:

Photoluminescence

SAED:

Selected area electron diffraction

SEI:

Solid electrolyte interface

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

VLD:

Visible light driven

XPS:

X-ray photoelectron spectroscopy

XRD:

X-ray diffraction

References

  • Chai B, Peng T, Mao J, Li K, Zan L (2012) Graphitic carbon nitride (gC 3 N 4)–Pt-TiO 2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14(48):16745–16752

    CAS  PubMed  Google Scholar 

  • Chang C, Fu Y, Hu M, Wang C, Shan G, Zhu L (2013) Photodegradation of bisphenol a by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl Catal B Environ 142:553–560

    Google Scholar 

  • Chang S, Xie A, Chen S, Xiang J (2014) Enhanced photoelectrocatalytic oxidation of small organic molecules by gold nanoparticles supported on carbon nitride. J Electroanal Chem 719:86–91

    CAS  Google Scholar 

  • Chang F, Zheng J, Wu F, Wang X, Deng B (2019) Binary composites WO3/g-C3N4 in porous morphology: facile construction, characterization, and reinforced visible light photocatalytic activity. Colloids Surf A Physicochem Eng Asp 563:11–21

    CAS  Google Scholar 

  • Chen X, Jun Y-S, Takanabe K, Maeda K, Domen K, Fu X, Antonietti M, Wang X (2009) Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light. Chem Mater 21(18):4093–4095

    CAS  Google Scholar 

  • Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    CAS  PubMed  Google Scholar 

  • Chen G, Bian S, Guo C-Y, Wu X (2019) Insight into the Z-scheme heterostructure WO3/g-C3N4 for enhanced photocatalytic degradation of methyl orange. Mater Lett 236:596–599

    CAS  Google Scholar 

  • Chu S, Wang C, Feng J, Wang Y, Zou Z (2014) Melem: a metal-free unit for photocatalytic hydrogen evolution. Int J Hydrog Energy 39(25):13519–13526

    CAS  Google Scholar 

  • Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568(1–2):28–40

    CAS  PubMed  Google Scholar 

  • Dong G, Zhao K, Zhang L (2012) Carbon self-doping induced high electronic conductivity and photoreactivity of gC 3 N 4. Chem Commun 48(49):6178–6180

    CAS  Google Scholar 

  • Dong G, Zhang Y, Pan Q, Qiu J (2014) A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J Photochem Photobiol C: Photochem Rev 20:33–50

    CAS  Google Scholar 

  • Duan Y (2018) Facile preparation of CuO/g-C3N4 with enhanced photocatalytic degradation of salicylic acid. Mater Res Bull 105:68–74

    CAS  Google Scholar 

  • Fageria P, Nazir R, Gangopadhyay S, Barshilia HC, Pande S (2015) Graphitic-carbon nitride support for the synthesis of shape-dependent ZnO and their application in visible light photocatalysts. RSC Adv 5(98):80397–80409

    CAS  Google Scholar 

  • Fan W, Zhang Q, Wang Y (2013) Semiconductor-based nanocomposites for photocatalytic H 2 production and CO 2 conversion. Phys Chem Chem Phys 15(8):2632–2649

    CAS  PubMed  Google Scholar 

  • Franklin EC (1922) The ammono carbonic acids. J Am Chem Soc 44(3):486–509

    CAS  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37

    CAS  PubMed  Google Scholar 

  • Gao X, Jiao X, Zhang L, Zhu W, Xu X, Ma H, Chen T (2015) Cosolvent-free nanocasting synthesis of ordered mesoporous gC 3 N 4 and its remarkable photocatalytic activity for methyl orange degradation. RSC Adv 5(94):76963–76972

    CAS  Google Scholar 

  • Gholipour MR, Dinh C-T, Béland F, Do T-O (2015) Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7(18):8187–8208

    Google Scholar 

  • Gholipour MR, Béland F, Do T-O (2016) Graphitic carbon nitride-titanium dioxide nanocomposite for photocatalytic hydrogen production under visible light. Int J Chem React Eng 14(4):851–858

    CAS  Google Scholar 

  • Gong W, Zou J, Zhang S, Zhou X, Jiang J (2016) Nickel oxide and nickel co-doped graphitic carbon nitride nanocomposites and its octylphenol sensing application. Electroanalysis 28(1):227–234

    CAS  Google Scholar 

  • Gulzar U, Goriparti S, Miele E, Li T, Maidecchi G, Toma A, De Angelis F, Capiglia C Zaccaria RP (2016). Next-generation textiles: from embedded Supercapacitors to Lithium ion batteries

    Google Scholar 

  • Guo X, Zhang G, Li Q, Xue H, Pang H (2018) Non-noble metal-transition metal oxide materials for electrochemical energy storage. Energy Storage Materials 15:171–201

    Google Scholar 

  • Hou Y, Wen Z, Cui S, Feng X, Chen J (2016) Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett 16(4):2268–2277

    CAS  PubMed  Google Scholar 

  • Huang L, Xu H, Li Y, Li H, Cheng X, Xia J, Xu Y, Cai G (2013) Visible-light-induced WO 3/gC 3 N 4 composites with enhanced photocatalytic activity. Dalton Trans 42(24):8606–8616

    CAS  PubMed  Google Scholar 

  • Katsumata K-i, Motoyoshi R, Matsushita N, Okada K (2013) Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J Hazard Mater 260:475–482

    CAS  PubMed  Google Scholar 

  • Kolmakov A, Klenov D, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5(4):667–673

    CAS  PubMed  Google Scholar 

  • Kumar S, Surendar T, Kumar B, Baruah A, Shanker V (2014) Synthesis of highly efficient and recyclable visible-light responsive mesoporous gC 3 N 4 photocatalyst via facile template-free sonochemical route. RSC Adv 4(16):8132–8137

    CAS  Google Scholar 

  • Li X, Feng Y, Li M, Li W, Wei H, Song D (2015) Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance. Adv Funct Mater 25(44):6858–6866

    CAS  Google Scholar 

  • Li L, Qin J, Bi H, Gai S, He F, Gao P, Dai Y, Zhang X, Yang D, Yang P (2017) Ni (OH) 2 nanosheets grown on porous hybrid gC 3 N 4/RGO network as high performance supercapacitor electrode. Sci Rep 7:43413

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Lou Z, Yang Y, Wang Y, Lu Y, Ye Z, Zhu L (2019a) Hollowsphere Nanoheterojunction of g-C3N4@ TiO2 with high visible light Photocatalytic property. Langmuir 35(3):779–786

    CAS  PubMed  Google Scholar 

  • Li X, Li Y, Sun G, Luo N, Zhang B, Zhang Z (2019b) Synthesis of a flower-like g-C3N4/ZnO hierarchical structure with improved CH4 sensing properties. Nano 9(5):724

    CAS  Google Scholar 

  • Liebig J v (1834) About some nitrogen compounds. Ann Pharm 10(10)

    Google Scholar 

  • Liu AY, Cohen ML (1989) Prediction of new low compressibility solids. Science 245(4920):841–842

    CAS  PubMed  Google Scholar 

  • Liu L, Wang J, Wang C, Wang G (2016) Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3 composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications. Appl Surf Sci 390:303–310

    CAS  Google Scholar 

  • Low J, Jiang C, Cheng B, Wageh S, Al-Ghamdi AA, Yu J (2017) A review of direct Z-scheme photocatalysts. Small Methods 1(5):1700080

    Google Scholar 

  • Lu X, Xu K, Chen P, Jia K, Liu S, Wu C (2014) Facile one step method realizing scalable production of gC 3 N 4 nanosheets and study of their photocatalytic H 2 evolution activity. J Mater Chem A 2(44):18924–18928

    CAS  Google Scholar 

  • Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Graphitic carbon nitride nanosheet–carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew Chem Int Ed 53(28):7281–7285

    CAS  Google Scholar 

  • Ma L, Fan H, Fu K, Lei S, Hu Q, Huang H, He G (2017) Protonation of graphitic carbon nitride (g-C3N4) for an electrostatically self-assembling carbon@ g-C3N4 core–shell nanostructure toward high hydrogen evolution. ACS Sustain Chem Eng 5(8):7093–7103

    CAS  Google Scholar 

  • Mamba G, Mishra A (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377

    CAS  Google Scholar 

  • Mousavi M, Habibi-Yangjeh A, Pouran SR (2018) Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J Mater Sci Mater Electron 29(3):1719–1747

    CAS  Google Scholar 

  • Navlani-García M, Verma P, Kuwahara Y, Kamegawa T, Mori K, Yamashita H (2018) Visible-light-enhanced catalytic activity of Ru nanoparticles over carbon modified g-C3N4. J Photochem Photobiol A Chem 358:327–333

    Google Scholar 

  • Niu C, Lu Y (1993) Science 261:334

    CAS  PubMed  Google Scholar 

  • Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329

    CAS  PubMed  Google Scholar 

  • Periyat P, Kavil J, Rakhi R, Anjana P (2018) One-pot synthesis of g-C3N4/MnO2 and g-C3N4/SnO2 hybrid Nanocomposites for Supercapacitor applications

    Google Scholar 

  • Samanta S, Martha S, Parida K (2014) Facile synthesis of Au/g-C3N4 nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. ChemCatChem 6(5):1453–1462

    CAS  Google Scholar 

  • Selvarajan S, Suganthi A, Rajarajan M (2018) Fabrication of g-C3N4/NiO heterostructured nanocomposite modified glassy carbon electrode for quercetin biosensor. Ultrason Sonochem 41:651–660

    CAS  PubMed  Google Scholar 

  • Semencha A, Blinov L (2010) Theoretical prerequisites, problems, and practical approaches to the preparation of carbon nitride: a review. Glas Phys Chem 36(2):199–208

    CAS  Google Scholar 

  • Senthil C, Kesavan T, Bhaumik A, Yoshio M, Sasidharan M (2017) Nitrogen rich carbon coated TiO2 nanoparticles as anode for high performance lithium-ion battery. Electrochim Acta 255:417–427

    CAS  Google Scholar 

  • Shakeel M, Li B, Yasin G, Arif M, Rehman W, Khan HD (2018) In situ fabrication of foamed Titania carbon nitride nanocomposite and its synergetic visible-light Photocatalytic performance. Ind Eng Chem Res 57(24):8152–8159

    CAS  Google Scholar 

  • Shen S, Shi J, Guo P, Guo L (2011) Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int J Nanotechnol 8(6–7):523–591

    CAS  Google Scholar 

  • Sridharan K, Jang E, Park TJ (2013) Novel visible light active graphitic C3N4–TiO2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl Catal B Environ 142:718–728

    Google Scholar 

  • Sudhaik A, Raizada P, Shandilya P, Singh P (2018) Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light. J Environ Chem Eng 6(4):3874–3883

    CAS  Google Scholar 

  • Tang J-y, Guo R-t, Zhou W-g, Huang C-y, Pan W-g (2018) Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl Catal B Environ 237:802–810

    CAS  Google Scholar 

  • Veith GM, Baggetto L, Adamczyk LA, Guo B, Brown SS, Sun X-G, Albert AA, Humble JR, Barnes CE, Bojdys MJ (2013) Electrochemical and solid-state lithiation of graphitic C3N4. Chem Mater 25(3):503–508

    CAS  Google Scholar 

  • Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76

    CAS  PubMed  Google Scholar 

  • Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2(8):1596–1606

    Google Scholar 

  • Wang Y, Ibad MF, Kosslick H, Harloff J, Beweries T, Radnik J, Schulz A, Tschierlei S, Lochbrunner S, Guo X (2015a) Synthesis and comparative study of the photocatalytic performance of hierarchically porous polymeric carbon nitrides. Microporous Mesoporous Mater 211:182–191

    CAS  Google Scholar 

  • Wang Y, Ou R, Wang H, Xu T (2015b) Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. J Membr Sci 475:281–289

    CAS  Google Scholar 

  • Wang J, Yang Z, Gao X, Yao W, Wei W, Chen X, Zong R, Zhu Y (2017a) Core-shell g-C3N4@ ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl Catal B Environ 217:169–180

    CAS  Google Scholar 

  • Wang M, Shen M, Zhang L, Tian J, Jin X, Zhou Y, Shi J (2017b) 2D-2D MnO2/g-C3N4 heterojunction photocatalyst: in-situ synthesis and enhanced CO2 reduction activity. Carbon 120:23–31

    CAS  Google Scholar 

  • Wu Y, Wang T, Zhang Y, Xin S, He X, Zhang D, Shui J (2016) Electrocatalytic performances of gC 3 N 4-LaNiO 3 composite as bi-functional catalysts for lithium-oxygen batteries. Sci Rep 6:24314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan M, Wu Y, Zhu F, Hua Y, Shi W (2016) The fabrication of a novel Ag 3 VO 4/WO 3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Phys Chem Chem Phys 18(4):3308–3315

    CAS  PubMed  Google Scholar 

  • Yu J, Wang S, Low J, Xiao W (2013) Enhanced photocatalytic performance of direct Z-scheme gC 3 N 4–TiO 2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15(39):16883–16890

    CAS  PubMed  Google Scholar 

  • Yu J, Wang K, Xiao W, Cheng B (2014) Photocatalytic reduction of CO 2 into hydrocarbon solar fuels over gC 3 N 4–Pt nanocomposite photocatalysts. Phys Chem Chem Phys 16(23):11492–11501

    CAS  PubMed  Google Scholar 

  • Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of gC 3 N 4 for selective CO 2 reduction to CH 3 OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem A 3(39):19936–19947

    CAS  Google Scholar 

  • Zeng J, Lee JY (2005) Effects of preparation conditions on performance of carbon-supported nanosize Pt-co catalysts for methanol electro-oxidation under acidic conditions. J Power Sources 140(2):268–273

    CAS  Google Scholar 

  • Zeng B, Zhang L, Wan X, Song H, Lv Y (2015) Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sensors Actuators B Chem 211:370–376

    CAS  Google Scholar 

  • Zhang Y, Ligthart DM, Quek X-Y, Gao L, Hensen EJ (2014) Influence of Rh nanoparticle size and composition on the photocatalytic water splitting performance of Rh/graphitic carbon nitride. Int J Hydrog Energy 39(22):11537–11546

    CAS  Google Scholar 

  • Zhang Y, Zhang D, Guo W, Chen S (2016) The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J Alloys Compd 685:84–90

    CAS  Google Scholar 

  • Zhao Z, Sun Y, Dong F (2015) Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7(1):15–37

    PubMed  Google Scholar 

  • Zhou X, Jin B, Li L, Peng F, Wang H, Yu H, Fang Y (2012) A carbon nitride/TiO 2 nanotube array heterojunction visible-light photocatalyst: synthesis, characterization, and photoelectrochemical properties. J Mater Chem 22(34):17900–17905

    CAS  Google Scholar 

  • Zhu B, Xia P, Ho W, Yu J (2015) Isoelectric point and adsorption activity of porous g-C3N4. Appl Surf Sci 344:188–195

    CAS  Google Scholar 

  • Zou J, Wu S, Liu Y, Sun Y, Cao Y, Hsu J-P, Wee ATS, Jiang J (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Higher Education Commission HEC, Pakistan, through grant number 7435/Punjab/NRPU/ R&D/HEC/2017 are acknowledged. The author F. K. Butt acknowledges financial support from the Alexander von Humboldt Foundation and Federal Ministry for Education and Research (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faheem K. Butt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butt, F.K., Ullah, S., Ahmad, J., Rehman, S.U., Tariq, Z. (2020). Graphitic Carbon Nitride/Metal Oxides Nanocomposites and Their Applications in Engineering. In: Siddiquee, S., Gan Jet Hong, M., Mizanur Rahman, M. (eds) Composite Materials: Applications in Engineering, Biomedicine and Food Science. Springer, Cham. https://doi.org/10.1007/978-3-030-45489-0_10

Download citation

Publish with us

Policies and ethics