Skip to main content

Two-Stage Optimal Sensor Placement Using Graph-Theory and Evolutionary Algorithms

  • Chapter
  • First Online:
Metaheuristic Optimization Algorithms in Civil Engineering: New Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 900))

  • 571 Accesses

Abstract

Data acquisition of ambient responses plays an important role in the modal identification and Structural Health Monitoring (SHM). The structural responses are measured by sensors fixed at different points of the structure. Since the number of sensors is limited, hence they must be placed in optimal positions for accurate identification. This chapter presents a two-stage Optimal Sensor Placement (OSP) method for modal identification of structures. At the first stage, using a graph-theoretic technique, the structure is partitioned into equal substructures. At the second stage, a predefined number of triaxial sensors are allocated to the substructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaveh, A., & Dadras Eslamlou, A. (2019). An efficient two-stage method for optimal sensor placement using graph-theoretical partitioning and evolutionary algorithms. Structural Control and Health Monitoring, 26(4), e2325. https://doi.org/10.1002/stc.2325.

    Article  Google Scholar 

  2. Sun, H., & Büyüköztürk, O. (2015). Optimal sensor placement in structural health monitoring using discrete optimization. Smart Materials and Structures, 24(12), 125034. https://doi.org/10.1088/0964-1726/24/12/125034.

    Article  Google Scholar 

  3. Yi, T. H., Li, H. N., Song, G., & Zhang, X. D. (2015). Optimal sensor placement for health monitoring of high-rise structure using adaptive monkey algorithm. Structural Control and Health Monitoring, 22(4), 667–681.

    Article  Google Scholar 

  4. Yi, T.-H., Li, H.-N., & Gu, M. (2011). A new method for optimal selection of sensor location on a high-rise building using simplified finite element model. Structural Engineering and Mechanics, 37(6), 671–684.

    Article  Google Scholar 

  5. Yi, T. H., Li, H. N., & Zhang, X. D. (2015). Health monitoring sensor placement optimization for Canton Tower using immune monkey algorithm. Structural Control and Health Monitoring, 22(1), 123–138.

    Article  Google Scholar 

  6. Yi, T. H., Li, H. N., & Wang, C. W. (2016). Multiaxial sensor placement optimization in structural health monitoring using distributed wolf algorithm. Structural Control and Health Monitoring, 23(4), 719–734.

    Article  Google Scholar 

  7. Middleton, D., & Institute of Electrical and Electronics Engineers. (1996). An introduction to statistical communication theory. Piscataway, NJ: IEEE press.

    Google Scholar 

  8. Sanayei, M., & Javdekar, C. N. (2002). Sensor placement for parameter estimation of structures using Fisher information matrix. In Applications of Advanced Technologies in Transportation (pp. 385–386).

    Google Scholar 

  9. Yi, T.-H., & Li, H.-N. (2012). Methodology developments in sensor placement for health monitoring of civil infrastructures. International Journal of Distributed Sensor Networks, 8(8), 612726. https://doi.org/10.1155/2012/612726.

    Article  Google Scholar 

  10. Yi, T. H., Zhou, G. D., Li, H. N., & Wang, C. W. (2017). Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm. Structural Control and Health Monitoring, 24(8), e1958.

    Article  Google Scholar 

  11. Kaveh, A. (2014). Optimal structural analysis, 2nd edition. John Wiley and Sons, UK.

    Google Scholar 

  12. Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms 2007 (pp. 1027–1035). Society for Industrial and Applied Mathematics.

    Google Scholar 

  13. Lim, C., Bohacek, S., Hespanha, J. P., & Obraczka, K. (2005). Hierarchical max-flow routing. In IEEE Global Telecommunications Conference, 2005. GLOBECOM’05 (pp. 6, 550). IEEE.

    Google Scholar 

  14. Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. In Advances in neural information processing systems (pp. 849–856).

    Google Scholar 

  15. Catbas, F., Caicedo, J., & Dyke, S. (2006). Development of a benchmark problem for bridge health monitoring. In Proceedings of the International Conference on Bridge Maintenance, Safety and Management, IABMAS 2006 (pp. 16–19). Porto, Portugal.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kaveh .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaveh, A., Dadras Eslamlou, A. (2020). Two-Stage Optimal Sensor Placement Using Graph-Theory and Evolutionary Algorithms. In: Metaheuristic Optimization Algorithms in Civil Engineering: New Applications. Studies in Computational Intelligence, vol 900. Springer, Cham. https://doi.org/10.1007/978-3-030-45473-9_6

Download citation

Publish with us

Policies and ethics