Skip to main content

Hypertrophic Cardiomyopathy

  • Chapter
  • First Online:
Clinical Cardiogenetics

Abstract

Hypertrophic cardiomyopathy (HCM) is the most common monogenic heart disease affecting at least 1 in 500 people worldwide. The hallmark of the disease is left ventricular hypertrophy in the absence of cardiac or systemic disease that may cause hypertrophy. The disease can present at any age and is highly variable. Patients can remain asymptomatic throughout their life, but HCM is also associated with adverse clinical events, like heart failure, stroke, and sudden cardiac death (SCD). Therapy is mainly directed toward relieving symptoms of heart failure and left ventricular outflow tract obstruction. Risk stratification with clinical risk markers can identify patients at high risk for SCD. In these patients, prevention of SCD is effective with an implantable cardioverter defibrillator.

Because of the hereditary nature of the disease, first-degree relatives are advised to undergo periodic cardiac evaluation for the presence of HCM. In about half of the HCM patients, a disease-causing variant can be detected in one of the genes encoding for sarcomeric proteins. Detection of a disease-causing variant allows predictive genetic testing in relatives and can thus better identify the relatives at risk for HCM and associated SCD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J. 1958;20(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Coats CJ, Hollman A. Hypertrophic cardiomyopathy: lessons from history. Heart. 2008;94(10):1258–63.

    Article  CAS  PubMed  Google Scholar 

  3. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92(4):785–9.

    Article  CAS  PubMed  Google Scholar 

  4. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC). Eur Heart J. 2014;35(39):2733–79.

    Article  PubMed  Google Scholar 

  5. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54.

    Article  PubMed  Google Scholar 

  6. Kitaoka H, Doi Y, Casey SA, Hitomi N, Furuno T, Maron BJ. Comparison of prevalence of apical hypertrophic cardiomyopathy in Japan and the United States. Am J Cardiol. 2003;92(10):1183–6.

    Article  PubMed  Google Scholar 

  7. Maron BJ, Wolfson JK, Roberts WC. Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol. 1992;70(7):785–90.

    Article  CAS  PubMed  Google Scholar 

  8. Varnava AM, Elliott PM, Mahon N, Davies MJ, McKenna WJ. Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol. 2001;88(3):275–9.

    Article  CAS  PubMed  Google Scholar 

  9. Maron BJ, Wolfson JK, Epstein SE, Roberts WC. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986;8(3):545–57.

    Article  CAS  PubMed  Google Scholar 

  10. van der Velden J, Tocchetti CG, Varricchi G, Bianco A, Sequeira V, et al. Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res. 2018;114(10):1273–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Elliott P, Baker R, Pasquale F, Quarta G, Ebrahim H, Mehta AB, et al. Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry disease survey. Heart. 2011;97(23):1957–60.

    Article  PubMed  Google Scholar 

  12. Limongelli G, Masarone D, D’Alessandro R, Elliott PM. Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Futur Cardiol. 2012;8(1):71–88.

    Article  Google Scholar 

  13. Wilkinson JD, Lowe AM, Salbert BA, Sleeper LA, Colan SD, Cox GF, et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the pediatric cardiomyopathy registry. Am Heart J. 2012;164(3):442–8.

    Article  PubMed  Google Scholar 

  14. Bhogal S, Ladia V, Sitwala P, Cook E, Bajaj K, Ramu V, et al. Cardiac amyloidosis: an updated review with emphasis on diagnosis and future directions. Curr Probl Cardiol. 2018;43(1):10–34.

    Article  PubMed  Google Scholar 

  15. Maron MS, Olivotto I, Zenovich AG, Link MS, Pandian NG, Kuvin JT, et al. Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tact obstruction. Circulation. 2006;114(21):2232–9.

    Article  PubMed  Google Scholar 

  16. Sanderson JE, Gibson DG, Brown DJ, Goodwin JF. Left ventricular filling in hypertrophic cardiomyopathy. An angiographic study. Br Heart J. 1977;39(6):661–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olivotto I, Cecchi F, Casey SA, Dolara A, Traverse JH, Maron BJ. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation. 2001;104(21):2517–24.

    Article  CAS  PubMed  Google Scholar 

  18. Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med. 2015;17(11):880–8.

    Article  PubMed  Google Scholar 

  19. Lekanne Deprez RH, Muurling-Vlietman JJ, Hruda J, Baars MJ, Wijnaendts LC, Stolte-Dijkstra I, et al. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene. J Med Genet. 2006;43(10):829–32.

    Article  CAS  PubMed  Google Scholar 

  20. Girolami F, Ho CY, Semsarian C, Baldi M, Will ML, Baldini K, et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010;55(14):1444–53.

    Article  CAS  PubMed  Google Scholar 

  21. Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, et al. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med. 2019;12(2):e002460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, et al. Cardiac myosin-binding protein C mutations and hyeprtrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation. 2009;119(11):1473–83.

    Article  PubMed  CAS  Google Scholar 

  23. Marian AJ, Mares A Jr, Kelly DP, Yu QT, Abchee AB, Hill R, et al. Sudden cardiac death in hypertrophic cardiomyopathy. Variability in phenotypic expression of beta-myosin heavy chain mutations. Eur Heart J. 1995;16(3):368–76.

    Article  CAS  PubMed  Google Scholar 

  24. Anan R, Greve G, Thierfelder L, Watkins H, McKenna WJ, Solomon S, et al. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest. 1994;93(1):280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Driest SL, Ackerman MJ, Ommen SR, Shakur R, Will ML, Nishimura RA, et al. Prevalence and severity of “benign” mutations in the beta-myosin heavy chain, cardiac troponin T, and alpha-tropomyosin genes in hypertrophic cardiomyopathy. Circulation. 2002;106(24):3085–90.

    Article  PubMed  CAS  Google Scholar 

  26. Monserrat L, Gimeno-Blanes JR, Marin F, Hermida-Prieto M, Garcia-Honrubia A, Perez I, et al. Prevalence of fabry disease in a Cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 50(25):2399–403.

    Google Scholar 

  27. Gollob MH, Green MS, Tang AS, Roberts R. PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy. Curr Opin Cardiol. 2002;17(3):229–34.

    Article  PubMed  Google Scholar 

  28. Forissier JF, Richard P, Briault S, Ledeuil C, Dubourg O, Charbonnier B, et al. First description of germline mosaicism in familial hypertrophic cardiomyopathy. J Med Genet. 2000;37(2):132–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Watkins H, Thierfelder L, Hwang DS, McKenna W, Seidman JG, Seidman CE. Sporadic hypertrophic cardiomyopathy due to de novo myosin mutations. J Clin Invest. 1992;90(5):1666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Alders M, Jongbloed R, Deelen W, van den Wijngaard A, Doevendans P, Ten Cate F, et al. The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur Heart J. 2003;24(20):1848–53.

    Article  CAS  PubMed  Google Scholar 

  31. Moolman-Smook JC, De Lange WJ, Bruwer EC, Brink PA, Corfield VA. The origins of hypertrophic cardiomyopathy-causing mutations in two South African subpopulations: a unique profile of both independent and founder events. Am J Hum Genet. 1999;65(5):1308–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaaskelainen P, Miettinen R, Karkkainen P, Toivonen L, Laakso M, Kuusisto J. Genetics of hypertrophic cardiomyopathy in eastern Finland: few founder mutations with benign or intermediary phenotypes. Ann Med. 2004;36(1):23–32.

    Article  PubMed  CAS  Google Scholar 

  33. Girolami F, Olivotto I, Passerini I, Zachara E, Nistri S, Re F, et al. A molecular screening strategy based on beta-myosin heavy chain, cardiac myosin binding protein C and troponin T genes in Italian patients with hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown). 2006;7(8):601–7.

    Article  Google Scholar 

  34. Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, et al. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat Genet. 2009;41(2):187–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zahka K, Kalidas K, Simpson MA, Cross H, Keller BB, Galambos C, et al. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish. Heart. 2008;94(10):1326–30.

    Article  CAS  PubMed  Google Scholar 

  36. Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol. 2007;8(2):113–26.

    Article  CAS  PubMed  Google Scholar 

  37. Mearini G, Schlossarek S, Willis MS, Carrier L. The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta. 2008;1782(12):749–63.

    Article  CAS  PubMed  Google Scholar 

  38. Mogensen J, van Tintelen JP, Fokstuen S, Elliott P, van Langen IM, Meder B, et al. The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur Heart J. 2015;36(22):1367–70.

    Article  CAS  PubMed  Google Scholar 

  39. Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP, et al. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat. 2007;28(7):683–93.

    Article  CAS  PubMed  Google Scholar 

  40. Goldgar DE, Easton DF, Byrnes GB, Spurdle AB, Iversen ES, Greenblatt MS. Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Hum Mutat. 2008;29(11):1265–72.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ingles J, McGaughran J, Scuffham PA, Atherton J, Semsarian C. A cost-effectiveness model of genetic testing for the evaluation of families with hypertrophic cardiomyopathy. Heart. 2012;98(8):625–30.

    Article  PubMed  Google Scholar 

  42. van Lint FHM, Mook ORF, Alders M, Bikker H, Lekanne Dit Deprez RH, Christiaans I. Large next-generation sequencing gene panels in genetic heart disease: yield of pathogenic variants and variants of unknown significance. Neth Heart J. 2019 Mar 7;27(6):304–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Christiaans I, Birnie E, Bonsel GJ, Mannens MM, Michels M, Majoor-Krakauer D, et al. Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy. Eur Heart J. 2011;32(9):1161–70.

    Article  PubMed  Google Scholar 

  44. van Velzen HG, Schinkel AFL, Baart SJ, Oldenburg RA, Frohn-Mulder IME, van Slegtenhorst MA, Michels M. Outcomes of contemporary family screening in hypertrophic cardiomyopathy. Circ Genom Precis Med. 2018;11(4):e001896.

    Article  PubMed  Google Scholar 

  45. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. ACCF/AHA guidelines for the diagnosis & treatment of HCM. Circulation. 2011;124:e783–831.

    PubMed  Google Scholar 

  46. Vriesendorp PA, Liebregts M, Steggerda RC, Schinkel AF, Willems R, Ten Cate FJ, et al. Long-term outcomes after medical and invasive treatment in patients with hypertrophic cardiomyopathy. JACC Heart Fail. 2014;2(6):630–6.

    Article  PubMed  Google Scholar 

  47. Elliott PM, Gimeno JR, Thaman R, Shah J, Ward D, Dickie S, et al. Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart. 2006;92(6):785–91.

    Article  CAS  PubMed  Google Scholar 

  48. O’Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014;35(30):2010–20.

    Article  PubMed  Google Scholar 

  49. Regitz-Zagrosek V, Blomstrom LC, Borghi C, et al. ESC guidelines on the management of cardiovascular diseases during pregnancy: the task force on the management of cardiovascular diseases during pregnancy of the European Society of Cardiology (ESC). Eur Heart J. 2011;32:3147–97.

    Article  PubMed  Google Scholar 

  50. Autore C, Conte MR, Piccininno M. Risk associated with pregnancy in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:1864–9.

    Article  PubMed  Google Scholar 

  51. Lima V, Parikh P, Zhu J, et al. Association of cardiomyopathy with adverse cardiac events in pregnant women at the time of delivery. J Am Coll Cardiol. 2015;3:257–66.

    Google Scholar 

  52. Balci A, Sollie-Szarynska KM, van der Bijl AG, et al. Prospective validation and assessment of cardiovascular and offspring risks models for pregnant women with congenital heart disease. Heart. 2014;100:1373–81.

    Article  PubMed  Google Scholar 

  53. Stergiopoulous K, Shiang E, Bench T. Pregnancy in patients with pre-existing cardiomyopathies. J Am Coll Cardiol. 2011;58:337–50.

    Article  Google Scholar 

  54. Christiaans I, Birnie E, Bonsel GJ, Wilde AAM, van Langen IM. Uptake of genetic counselling and predictive DNA testing in hypertrophic cardiomyopathy. Eur J Hum Genet. 2008;16(10):1201–7.

    Article  PubMed  Google Scholar 

  55. Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, Helio T, Keren A, McKenna WJ, Monserrat L, Pankuweit S, Perrot A, Rapezzi C, Ristic A, Seggewiss H, van Langen I, Tavazzi L, European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J. 2010 Nov;31(22):2715–26.

    Article  PubMed  Google Scholar 

  56. van der Roest WP, Pennings JM, Bakker M, van den Berg MP, van Tintelen JP. Family letters are an effective way to inform relatives about inherited cardiac disease. Am J Med Genet A. 2009;149a(3):357–63.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Michels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christiaans, I., Elliott, P.M., Michels, M. (2020). Hypertrophic Cardiomyopathy. In: Baars, H.F., Doevendans, P.A.F.M., Houweling, A.C., van Tintelen, J.P. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-030-45457-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45457-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45456-2

  • Online ISBN: 978-3-030-45457-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics