Skip to main content

Introduction to Molecular Genetics

  • Chapter
  • First Online:
Clinical Cardiogenetics

Abstract

In the last decades, molecular genetics has been rapidly integrated into the diagnostics of cardiovascular diseases, at first not only to solve well-defined familial cases but with the recent developments of next-generation sequencing (NGS) also to identify genetic components involved in complex genetic cardiac diseases and to implement personalized genomics into routine patient care. In this introductory chapter, several aspects of molecular genetics will be described and discussed. Firstly, the molecular basics of DNA, RNA, and proteins and the different types of genetic mutations and their effects at the level of these different molecules will be addressed in the sections “DNA, RNA, and Proteins” and “Genetic Mutations.” As the mode of inheritance of mutations as well as the specific outcomes in mutation carriers may differ, several aspects related to this is being discussed in the “Genes in Families and Populations” section. Although NGS is becoming the most widely used technique to identify mutations, still several other techniques are being applied, and in the “Molecular Genetic Techniques” section, an overview of all currently used methods is provided. With the use of the aforementioned techniques, often large amounts of data are being produced, and careful analysis and interpretation of these data to dissect “noise” from truly relevant information is of utmost importance. The section “Analysis and Interpretation” will focus on this. The use of molecular genetics already led to the identification of significant numbers of genes underlying cardiovascular diseases; however, still more are to be discovered, and approaches to do this are being described in the “Finding New Disease Genes” section. Finally, in the section “Clinical Genetic Diagnostics,” the integration of molecular genetics in daily clinical genetic patient care is being addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet. 2014;15:423–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M, Postma AV, van Langen I, Mannens MM, Wilde AA. Expanding spectrum of human RYR2 -related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007;116:1569–76.

    PubMed  Google Scholar 

  3. Roberts JD, Herkert JC, Rutberg J, Nikkel SM, Wiesfeld AC, Dooijes D, Gow RM, van Tintelen JP, Gollob MH. Detection of genomic deletions of PKP2 in arrhythmogenic right ventricular cardiomyopathy. Clin Genet. 2013;83:452–6.

    CAS  PubMed  Google Scholar 

  4. Weiss K, Applegate C, Wang T, Batista DA. Familial TAB2 microdeletion and congenital heart defects including unusual valve dysplasia and tetralogy of fallot. Am J Med Genet A. 2015;167A:2702–6.

    PubMed  Google Scholar 

  5. van der Zwaag PA, van Rijsingen IA, Asimaki A, Jongbloed JD, van Veldhuisen DJ, Wiesfeld AC, Cox MG, van Lochem LT, de Boer RA, Hofstra RM, Christiaans I, van Spaendonck-Zwarts KY, Lekanne dit Deprez RH, Judge DP, Calkins H, Suurmeijer AJ, Hauer RN, Saffitz JE, Wilde AA, van den Berg MP, van Tintelen JP. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail. 2012;14:1199–207.

    PubMed  PubMed Central  Google Scholar 

  6. van Rijsingen IA, van der Zwaag PA, Groeneweg JA, Nannenberg EA, Jongbloed JD, Zwinderman AH, Pinto YM, Lekanne dit Deprez RH, Post JG, Tan HL, de Boer RA, Hauer RN, Christiaans I, van den Berg MP, van Tintelen JP, Wilde AA. Outcome in phospholamban R14del carriers: results of a large multicentre cohort study. Circ Cardiovasc Genet. 2014;7:455–65.

    PubMed  Google Scholar 

  7. Dib C, Fauré S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, Weissenbach J. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996;380:152–4.

    CAS  PubMed  Google Scholar 

  8. Williamson R, Bowcock A, Kidd K, Pearson P, Schmidtke J, Ceverha P, Chipperfield M, Cooper DN, Coutelle C, Hewitt J, Klinger K, Langley K, Beckmann J, Tolley M, Maidak B, Hewett D, Linch C, Maslen G. Report of the DNA committee and catalogues of cloned and mapped genes, markers formatted for PCR and DNA polymorphisms. Cytogenet Cell Genet. 1990;55:457–778.

    CAS  PubMed  Google Scholar 

  9. Futreal PA, Söderkvist P, Marks JR, Iglehart JD, Cochran C, Barrett JC, Wiseman RW. Detection of frequent allelic loss on proximal chromosome 17q in sporadic breast carcinoma using microsatellite length polymorphisms. Cancer Res. 1992;52:2624–7.

    CAS  PubMed  Google Scholar 

  10. Lindor NM, Karnes PS, Michels VV, Dewald GW, Goerss J, Jalal S, Jenkins RB, Vockley G, Thibodeau SN. Uniparental disomy in congenital disorders: a prospective study. Am J Med Genet. 1995;58:143–6.

    CAS  PubMed  Google Scholar 

  11. Vilar E, Mork ME, Cuddy A, Borras E, Bannon SA, Taggart MW, Ying J, Broaddus RR, Luthra R, Rodriguez-Bigas MA, Lynch PM, You YQ. Role of microsatellite instability-low as a diagnostic biomarker of Lynch syndrome in colorectal cancer. Cancer Gene Ther. 2014;207:495–502.

    CAS  Google Scholar 

  12. Lyon MF. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961;190:372–3.

    CAS  PubMed  Google Scholar 

  13. Lyon MF. Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet. 1962;14:135–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lubs HA. A marker X chromosome. Am J Hum Genet. 1969;21:231–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharp AJ, Locke DP, McGrath SD, Cheng Z, Bailey JA, Vallente RU, Pertz LM, Clark RA, Schwartz S, Segraves R, Oseroff VV, Albertson DG, Pinkel D, Eichler EE. Segmental duplications and copy-number variation in the human genome. Am J Hum Genet. 2005;77:78–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Goidts V, Cooper DN, Armengol L, Schempp W, Conroy J, Estivill X, Nowak N, Hameister H, Kehrer-Sawatzki H. Complex patterns of copy number variation at sites of segmental duplications: an important category of structural variation in the human genome. Hum Genet. 2006;120:270–84.

    CAS  PubMed  Google Scholar 

  17. Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, Zhang J, Liu G, Ihara S, Nakamura H, Hurles ME, Lee C, Scherer SW, Jones KW, Shapero MH, Huang J, Aburatani H. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res. 2006;16:1575–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME. Global variation in copy number in the human genome. Nature. 2006;444:444–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Driscoll DA, Salvin J, Sellinger B, Budarf ML, McDonald-McGinn DM, Zackai EH, Emanuel BS. Prevalence of 22q11 microdeletions in DiGeorge and velocardiofacial syndromes: implications for genetic counselling and prenatal diagnosis. J Med Genet. 1993;30:813–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci U S A. 1977;74:5463–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol. 1986;51(Pt 1):263–73.

    CAS  PubMed  Google Scholar 

  22. Jovanovich S, Bogdan G, Belcinski R, Buscaino J, Burgi D, Butts EL, Chear K, Ciopyk B, Eberhart D, El-Sissi O, Franklin H, Gangano S, Gass J, Harris D, Hennessy L, Kindwall A, King D, Klevenberg J, Li Y, Mehendale N, McIntosh R, Nielsen B, Park C, Pearson F, Schueren R, Stainton N, Troup C, Pm V, Vangbo M, Woudenberg T, Wyrick D, Williams S. Developmental validation of a fully integrated sample-to-profile rapid human identification system for processing single-source reference buccal samples. Forensic Sci Int Genet. 2015;16:181–94.

    CAS  PubMed  Google Scholar 

  23. Klein D. Quantification using real-time PCR technology: applications and limitations. Trends Mol Med. 2002;8:257–60.

    CAS  PubMed  Google Scholar 

  24. Ross RS, Chien KR. The polymerase chain reaction (PCR) and cardiovascular diagnosis. Trends Cardiovasc Med. 1991;1:1–5.

    CAS  PubMed  Google Scholar 

  25. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6:986–94.

    CAS  PubMed  Google Scholar 

  26. Calabrese F, Thiene G. Myocarditis and inflammatory cardiomyopathy: microbiological and molecular biological aspects. Cardiovasc Res. 2003;60:11–25.

    CAS  PubMed  Google Scholar 

  27. Guiver M, Fox AJ, Mutton K, Mogulkoc N, Egan J. Evaluation of CMV viral load using TaqMan CMV quantitative PCR and comparison with CMV antigenemia in heart and lung transplant recipients. Transplantation. 2001;71:1609–15.

    CAS  PubMed  Google Scholar 

  28. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. BioTechniques. 1992;13:444–9.

    CAS  PubMed  Google Scholar 

  29. Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem. 2012;84:1003–11.

    CAS  PubMed  Google Scholar 

  30. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30:e57.

    PubMed  PubMed Central  Google Scholar 

  31. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.

    CAS  PubMed  Google Scholar 

  32. Sanger F, Coulson AR, Hong GF, Hill DF, Petersen GB. Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol. 1982;162:729–73.

    CAS  PubMed  Google Scholar 

  33. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431:931–45.

    Google Scholar 

  34. Istrail S, Sutton GG, Florea L, Halpern AL, Mobarry CM, Lippert R, Walenz B, Shatkay H, Dew I, Miller JR, Flanigan MJ, Edwards NJ, Bolanos R, Fasulo D, Halldorsson BV, Hannenhalli S, Turner R, Yooseph S, Lu F, Nusskern DR, Shue BC, Zheng XH, Zhong F, Delcher AL, Huson DH, Kravitz SA, Mouchard L, Reinert K, Remington KA, Clark AG, Waterman MS, Eichler EE, Adams MD, Hunkapiller MW, Myers EW, Venter JC. Whole-genome shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci U S A. 2004;101:1916–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242:84–9.

    CAS  PubMed  Google Scholar 

  36. Mardis ER. Next-generation sequencing platforms. Annu Rev Anal Chem. 2013;6:287–303.

    CAS  Google Scholar 

  37. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. 2003;299:682–6.

    CAS  PubMed  Google Scholar 

  38. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, Malla S, Marriott H, Nieto T, O’Grady J, Olsen HE, Pedersen BS, Rhie A, Richardson H, Quinlan AR, Snutch TP, Tee L, Paten B, Phillippy AM, Simpson JT, Loman NJ, Loose M. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018 Apr;36(4):338–45. https://doi.org/10.1038/nbt.4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Volden R, Palmer T, Byrne A, Cole C, Schmitz RJ, Green RE, Vollmers C. Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly multiplexed full-length single-cell cDNA. Proc Natl Acad Sci U S A. 2018 Sep 10;115:9726–31. https://doi.org/10.1073/pnas.1806447115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Samorodnitsky E, Jewell BM, Hagopian R, Miya J, Wing MR, Lyon E, Damodaran S, Bhatt D, Reeser JW, Datta J, Roychowdhury S. Evaluation of hybridization capture versus amplicon-based methods for whole-exome sequencing. Hum Mutat. 2015;36:903–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Vatta M, Spoonamore KG. Use of genetic testing to identify sudden cardiac death syndromes. Trends Cardiovasc Med. 2015;25:738–48.

    PubMed  Google Scholar 

  42. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17:405–24.

    PubMed  PubMed Central  Google Scholar 

  43. He D, Furlotte N, Eskin E. Detection and reconstruction of tandemly organized de novo copy number variations. BMC Bioinformatics. 2010 Dec 14;11(Suppl 11):S12. https://doi.org/10.1186/1471-2105-11-S11-S12.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Teo SM, Pawitan Y, Ku CS, Chia KS, Salim A. Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics. 2012 Nov 1;28(21):2711–8. https://doi.org/10.1093/bioinformatics/bts535.

    Article  CAS  PubMed  Google Scholar 

  45. Cui H, Dhroso A, Johnson N, Korkin D. The variation game: cracking complex genetic disorders with NGS and omics data. Methods. 2015 Jun;79–80:18–31. https://doi.org/10.1016/j.ymeth.2015.04.018.

    Article  CAS  PubMed  Google Scholar 

  46. Hehir-Kwa JY, Tops BBJ, Kemmeren P. The clinical implementation of copy number detection in the age of next generation sequencing. Expert Rev Mol Diagn. 2018 Sep 15;18(10):907–15. https://doi.org/10.1080/14737159.2018.1523723.

    Article  CAS  PubMed  Google Scholar 

  47. Truty R, Paul J, Kennemer M, Lincoln SE, Olivares E, Nussbaum RL, Aradhya S. Prevalence and properties of intragenic copy-number variation in Mendelian disease genes. Genet Med. 2018 Jun 12;21(1):114–23. https://doi.org/10.1038/s41436-018-0033-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Overwater E, Marsili L, Baars MJH, Baas AF, van de Beek I, Dulfer E, van Hagen JM, Hilhorst-Hofstee Y, Kempers M, Krapels IP, Menke LA, Verhagen JMA, Yeung KK, Zwijnenburg PJG, Groenink M, van Rijn P, Weiss MM, Voorhoeve E, van Tintelen JP, Houweling AC, Maugeri A. Results of next-generation sequencing gene panel diagnostics including copy-number variation analysis in 810 patients suspected of heritable thoracic aortic disorders. Hum Mutat. 2018 Sep;39(9):1173–92. https://doi.org/10.1002/humu.23565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wallis Y, Payne S, McAnulty C, Bodmer D, Sistermans E, Robertson K, Moore D, Abbs S, Deans Z, Devereau A. 2013. Practice guidelines for the evaluation of pathogenicity and the reporting of sequence variants in clinical molecular genetics. http://www.acgs.uk.com/media/774853/evaluation_and_reporting_of_sequence_variants_bpgs_june_2013_-finalpdf.pdf

  50. Weiss MM, Van der Zwaag B, Jongbloed JD, Vogel MJ, Brüggenwirth HT, Lekanne Deprez RH, Mook O, Ruivenkamp CA, van Slegtenhorst MA, van den Wijngaard A, Waisfisz Q, Nelen MR, van der Stoep N. Best practice guidelines for the use of next generation sequencing applications in genome diagnostics: a national collaborative study of Dutch genome diagnostic laboratories. Hum Mutat. 2013;34:1313–21.

    PubMed  Google Scholar 

  51. Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, Kobayashi Y, Patil N, Thusberg J, Westbrook M, Topper S. Sherloc: a comprehensive refinement of the ACMG–AMP variant classification criteria. Genet Med. 2017 Oct;19(10):1105–17. https://doi.org/10.1038/gim.2017.37.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li Q, Wang K. InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet. 2017 Feb 2;100(2):267–80. https://doi.org/10.1016/j.ajhg.2017.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oliver GR, Hart SN, Klee EW. Bioinformatics for clinical next generation sequencing. Clin Chem. 2015;61:124–35.

    CAS  PubMed  Google Scholar 

  54. Riera C, Lois S, Dom C, Fernandez-Cadenas I, Montaner J, Rodrıguez-Sureda V, de la Cruz X. Molecular damage in Fabry disease: characterization and prediction of alpha-galactosidase a pathological mutations. Proteins. 2015;83:91–104.

    CAS  PubMed  Google Scholar 

  55. Thusberg J, Olatubosun A, Vihinen M. Performance of mutation pathogenicity prediction methods on missense variants. Hum Mutat. 2011;32:358–68.

    PubMed  Google Scholar 

  56. Houdayer C, Caux-Montcoutier V, Krieger S, Barrois M, Bonnet F, Bourdon V, Bronner M, Buisson M, Coulet F, Gaildrat P, Lefol C, Léone M, Mazoyer S, Muller D, Remenieras A, Révillion F, Rouleau E, Sokolowska J, Jp V, Lidereau R, Soubrier F, Sobol H, Sevenet N, Bressac-de Paillerets B, Hardouin A, Tosi M, Om S, Stoppa-Lyonnet D. Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum Mutat. 2012;33:1228–38.

    CAS  PubMed  Google Scholar 

  57. Vreeswijk MP, Kraan JN, van der Klift HM, Vink GR, Cornelisse CJ, Wijnen JT, Bakker E, van Asperen CJ, Devilee P. Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat. 2009;30:107–14.

    CAS  PubMed  Google Scholar 

  58. Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, Rai TS, Khullar M, Soares P, Bahl A, Tharkan JM, Vaideeswar P, Rathinavel A, Narasimhan C, Ayapati DR, Ayub Q, Mehdi SQ, Oppenheimer S, Richards MB, Price AL, Patterson N, Reich D, Singh L, Tyler-Smith C, Thangaraj K. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat Genet. 2009;41:187–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Fokkema IF, Taschner PE, Schaafsma GC, Celli J, Laros JF, den Dunnen JT. LOVD v.2.0: the next generation in gene variant databases. Hum Mutat. 2011;32:557–63.

    CAS  PubMed  Google Scholar 

  60. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R, Villamarin-Salomon R, Rubinstein W, Maglott DR. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44:D862–8.

    CAS  PubMed  Google Scholar 

  61. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133:1–9.

    CAS  PubMed  Google Scholar 

  62. Andreasen C, Nielsen JB, Refsgaard L, Holst AG, Christensen AH, Andreasen L, Sajadieh A, Haunsø S, Svendsen JH, Olesen MS. New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur J Hum Genet. 2013;21:918–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Risgaard B, Jabbari R, Refsgaard L, Holst AG, Haunsø S, Sadjadieh A, Winkel BG, Olesen MS, Tfelt-Hansen J. High prevalence of genetic variants previously associated with Brugada syndrome in new exome data. Clin Genet. 2013;84:489–95.

    CAS  PubMed  Google Scholar 

  64. Bayrak-Toydemir P, McDonald J, Mao R, Phansalkar A, Gedge F, Robles J, Goldgar D, Lyon E. Likelihood ratios to assess genetic evidence for clinical significance of uncertain variants: hereditary hemorrhagic telangiectasia as a model. Exp Mol Pathol. 2008;85:45–9.

    CAS  PubMed  Google Scholar 

  65. Thompson D, Easton DF, Goldgar DE. A full-likelihood method for the evaluation of causality of sequence variants from family data. Am J Hum Genet. 2003;73:652–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Møller P, Clark N, Mæhle L. A simplified method for segregation analysis (SISA) to determine penetrance and expression of a genetic variant in a family. Hum Mutat. 2011;32:568–71.

    PubMed  Google Scholar 

  67. Lekanne Deprez RH, Muurling-Vlietman JJ, Hruda J, Baars MJ, Wijnaendts LC, Stolte-Dijkstra I, Alders M, van Hagen JM. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene. J Med Genet. 2006;43:829–32.

    CAS  PubMed  Google Scholar 

  68. Fortier N, Rudy G, Scherer A. Detection of CNVs in NGS data using VS-CNV. Methods Mol Biol. 2018;1833:115–27. https://doi.org/10.1007/978-1-4939-8666-8_9.

    Article  CAS  PubMed  Google Scholar 

  69. Matthijs G, Souche E, Alders M, Corveleyn A, Eck S, Feenstra I, Race V, Sistermans E, Sturm M, Weiss M, Yntema H, Bakker B, Scheffer H, Bauer P. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016;24:2–5.

    CAS  PubMed  Google Scholar 

  70. Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, Leon A, Pullambhatla M, Temple-Smolkin RL, Voelkerding KV, Wang C, Carter AB. Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the association for molecular pathology and the college of American pathologists. J Mol Diagn. 2018 Jan;20(1):4–27. https://doi.org/10.1016/j.jmoldx.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  71. Pugh TJ, Kelly MA, Gowrisankar S, Hynes E, Seidman MA, Baxter SM, Bowser M, Harrison B, Aaron D, Mahanta LM, Lakdawala NK, McDermott G, White ET, Rehm HL, Lebo M, Funke BH. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet Med. 2014;16:601–8.

    CAS  PubMed  Google Scholar 

  72. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7:111–8.

    CAS  PubMed  Google Scholar 

  73. Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, Eckloff BW, Ward CJ, Winearls CG, Torres VE, Harris PC. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol. 2012;23:915–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Milko LV, Funke BH, Hershberger RE, Azzariti DR, Lee K, Riggs ER, Rivera-Munoz EA, Weaver MA, Niehaus A, Currey EL, Craigen WJ, Mao R, Offit K, Steiner RD, Martin CL, Rehm HL, Watson MS, Ramos EM, Plon SE, Berg JS. Development of clinical domain working groups for the clinical genome resource (ClinGen): lessons learned and plans for the future. Genet Med. 2018 Sep 5;21(4):987–93. https://doi.org/10.1038/s41436-018-0267-2.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Treangen TJ, Salzberg SL. Repetitive DNA and next generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13:36–46.

    CAS  Google Scholar 

  76. Rehm HL. Disease-targeted sequencing: a cornerstone in the clinic. Nat Rev Genet. 2013;14:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lubin IM, Caggana M, Constantin C, Gross SJ, Lyon E, Pagon RA, Trotter TL, Wilson JA, McGovern MM. Ordering molecular genetic tests and reporting results: practices in laboratory and clinical settings. J Mol Diagn. 2008;10:459–68.

    PubMed  PubMed Central  Google Scholar 

  78. Lubin IM, McGovern MM, Gibson Z, Gross SJ, Lyon E, Pagon RA, Pratt VM, Rashid J, Shaw C, Stoddard L, Trotter TL, Williams MS, Amos Wilson J, Pass K. Clinician perspectives about molecular genetic testing for heritable conditions and development of a clinician- friendly laboratory report. J Mol Diagn. 2009;11:162–71.

    PubMed  PubMed Central  Google Scholar 

  79. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, Friez MJ, Funke BH, Hegde MR, Working Group of the American College of Medical Genetics and Genomics Laboratory Quality Assurance Committee. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15:733–47.

    PubMed  PubMed Central  Google Scholar 

  80. Scheuner MT, Hilborne L, Brown J, Lubin IM. A report template for molecular genetic tests designed to improve communication between the clinician and laboratory. Genet Test Mol Biomarkers. 2012;16:761–9.

    PubMed  Google Scholar 

  81. Treacy RJL, Robinson DO. Draft best practice guidelines for reporting molecular genetics results. 2013. http://www.cmgs.org/BPGs/Best_Practice_Guidelines.htm.

  82. Suthers G. Guidelines for reporting molecular genetic tests to medical practitioners. 2009. http://www.rcpa.edu.au//Home.htm

  83. Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, Andraws N, Patterson ML, Krivohlavek LA, Fellis J, Humphray S, Saffrey P, Kingsbury Z, Weir JC, Betley J, Grocock RJ, Margulies EH, Farrow EG, Artman M, Safina NP, Petrikin JE, Hall KP, Kingsmore SF. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4:154ra135.

    PubMed  PubMed Central  Google Scholar 

  84. Priest JR, Ceresnak SR, Dewey FE, Malloy-Walton LE, Dunn K, Grove ME, Perez MV, Maeda K, Dubin AM, Ashley EA. Molecular diagnosis of long QT syndrome at 10 days of life by rapid whole genome sequencing. Heart Rhythm. 2014;11:1707–13.

    PubMed  PubMed Central  Google Scholar 

  85. Gilissen C, Hehir-Kwa JY, Thung DT, van de Vorst M, van Bon BW, Willemsen MH, Kwint M, Janssen IM, Hoischen A, Schenck A, Leach R, Klein R, Tearle R, Bo T, Pfundt R, Yntema HG, de Vries BB, Kleefstra T, Brunner HG, Vissers LE, Veltman JA. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344–7.

    CAS  PubMed  Google Scholar 

  86. Zhao M, Wang QQ, Jia P, Zhao Z. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Biochem. 2013;14(Suppl 11):S1.

    Google Scholar 

  87. Johansson LF, van Dijk F, de Boer EN, van Dijk-Bos KK, Jongbloed JD, van der Hout AH, Westers H, Sinke RJ, Swertz MA, Sijmons RH, Sikkema-Raddatz B. CoNVaDING: single exon variation detection in targeted NGS data. Hum Mutat. 2016;37:457–64.

    CAS  PubMed  Google Scholar 

  88. Tan R, Wang Y, Kleinstein SE, Liu Y, Zhu X, Guo H, Jiang Q, Allen AS, Zhu M. An evaluation of copy number variation detection tools from whole exome sequencing data. Hum Mutat. 2013;35:899–907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan D. H. Jongbloed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jongbloed, J.D.H., Lekanne Deprez, R.H., Vatta, M. (2020). Introduction to Molecular Genetics. In: Baars, H.F., Doevendans, P.A.F.M., Houweling, A.C., van Tintelen, J.P. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-030-45457-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45457-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45456-2

  • Online ISBN: 978-3-030-45457-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics