Skip to main content

Modelling, Simulation and Analysis

  • Chapter
  • First Online:
Energy Internet

Abstract

Although there are many simulation tools in various energy fields, due to the differences in technical characteristics in various energy fields, simulation techniques cannot be directly integrated to meet the development needs of the energy internet. Facing different application requirements, different modelling ideas and methods as well as solution algorithms are proposed in this chapter. For modelling, simulation and analysis of quasi-steady-state and long-term issues of the energy internet, a standard procedure is suggested for developing concepts or modifying existing systems, with underlying issues discussed. For the study of dynamics and transients, modelling methods of components and networks under different energy conditions are first discussed. The node equation in matrix form is used in the power grid, and the node pressure equation and branch flow equation are adopted in a thermal network and gas pipeline network. Then, considering the interweaving and interaction of long dynamic processes of wide time scale and phased evolution in the energy internet, this chapter proposes a three-layer multi-mode phased hybrid simulation framework to solve the dynamic and transient coupling and interactions between devices and adjacent networks of different energy types in the energy internet. Then, some existing simulation software suites and tools in energy engineering fields and academic circles are introduced in detail. Possible problems are discussed, including determining how to select software suites and tools with embedded models, combining different tools or developing and integrating new modules or tools. Finally, this chapter enumerates some typical component models in the energy internet and presents simulation results based on several cases. A brief analysis of a park energy internet case shows the correctness of the modelling and solution considerations mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Source: Danish Energy Agency: Technology Data for Energy Plants for Electricity and District heating generation, August 2016 (Update 2017 and July 2018), [EB/OL], https://ens.dk/en/our-services/projections-and-models/technology-data

  2. IRENA, renewable energy statistics, The International Renewable Energy Agency, Abu Dhabi, [EB/OL] (2018). ISBN 978–92-9260-077-8, https://www.irena.org/publicationsearch?irena_topic=440b8182ba8941d291-b9aefac97fef47

  3. T. Jamal, T. Urmee, M. Calais et al., Technical challenges of PV deployment into remote Australian electricity networks: a review. Renew. Sustain. Energy Rev. 77, 1309–1325 (2017)

    Article  Google Scholar 

  4. X Xu, Y Huang, G He, et.al. (2009) Modeling of large grid-integrated PV station and analysis its impact on grid voltage [C]. Paper presented at 2009 International Conference on Sustainable Power Generation and Supply. Nanjing, China

    Google Scholar 

  5. M.J.E Alam, K.M. Muttaqi, D. Sutanto et al., A performance analysis of distribution networks under high penetration of solar PV, in Proceedings of 44th International Conference on Large High Voltage Electric Systems (2012)

    Google Scholar 

  6. K. Fekete, Z. Klaic, L. Majdandzic, Expansion of the residential photovoltaic systems and its harmonic impact on the distribution grid. Renew. Energy 43, 140–148 (2012)

    Article  Google Scholar 

  7. S. Kosai, Dynamic vulnerability in standalone hybrid renewable energy system. Energy Convers. Manag. 180, 258–268 (2019)

    Article  Google Scholar 

  8. H. Lund, Renewable Energy Systems – A Smart Energy Systems Approach to the Choice and Modelling of 100% Renewable Solutions, 2nd edn. (Elsevier). ISBN 978–0-12-401423-5, http://www.energyplan.eu/

  9. M. Rezkalla, A. Zecchino, S. Martinenas et al., Comparison between synthetic inertia and fast frequency containment control based on single phase EVs in a micro grid. Appl. Energy 210, 764–775 (2018)

    Article  Google Scholar 

  10. D. Yoganathan, S. Kondepudi, B. Kalluri et al., Optimal sensor placement strategy for office buildings using clustering algorithms. Energy Build. 158, 1206–1225 (2018)

    Article  Google Scholar 

  11. For example see: [EB/OL], http://scanivalve.com/products/pressure-measurement/

  12. N.A. Cumpsty, J.H. Horlock, Averaging non-uniform flow for a purpose, in Proceedings of GT2005 ASME Turbo Expo 2005, Power for Land, Sea and Air, 6–9 June 2005. Reno-Tahoe, Nevada, USA, GT2005-68081

    Google Scholar 

  13. B.W. Abegaz, T. Datta, S.M. Mahajan, Sensor technology for the energy-water nexus – a review. Appl. Energy 210, 451–466 (2018)

    Article  Google Scholar 

  14. S. Yoon, Y. Yu, Hidden factors and handing strategy for accuracy of virtual in-situ sensor calibration in building energy systems: sensitivity effect and reviving calibration. Energy Build. 170, 217–228 (2018)

    Article  Google Scholar 

  15. [EB/OL], https://en.wikipedia.org/wiki/Emtp

  16. [EB/OL], https://baike.baidu.com/item/pscad/1633247

  17. Z. Sun, P. Wei, Y. Zhang, Dynamic simulation of voltage collapse in power systems with NETOMAC. J. Shandong Univ. Technol. (Nat. Sci.) 47–50 (2004)

    Google Scholar 

  18. School of Electrical Engineering, Wuhan University, PSASP Software Manual (2004)

    Google Scholar 

  19. China Electric Power Academy, BPA User Manual V4.10

    Google Scholar 

  20. [EB/OL], https://www.ws-corp.com/

  21. M.A. Volman, V.K. Semenov, System of training programs for simulation of reactor measurements, in 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE (2016)

    Google Scholar 

  22. P. Luo, H. Liu, X. Rong et al., Research on the simulation of 6.6 kV system in nuclear power plant based on 3KEYMASTER software. Comput. Era 4, 6–8 (2016)

    Google Scholar 

  23. J. Wojcik, J. Wang, (2017). Technical feasibility study of thermal energy storage integration into the conventional power plant cycle. Energies, 10(2): 205

    Google Scholar 

  24. [EB/OL], https://energy.traxintl.com/training/protrax-overview/

  25. J. Zheng, F. Song, G. Chen et al., Development of RealPipe-Gas simulation software for gas pipeline network. Oil & Gas Storage Transp. 30(9), 652–659 (2011)

    Google Scholar 

  26. P. Fritzson, B. Bachmann, K. Moudgalya et al., Introduction to Modelica with Examples in Modeling, Technology, and Applications, [EB/OL], http://omwebbook.openmodelica.org/

  27. See also: [EB/OL], https://www.openmodelica.org/

  28. F. Casella, P. Parini, Optimal control of power generation systems using realistic object-oriented modelica models. IFAC PapersOnLine 50:11100–11106 (2017)

    Google Scholar 

  29. L. Pierobon, K. Iyengar, P. Breuhaus et al., Dynamic performance of power generation systems for off-shore oil and gas platforms, in Proceedings of ASME Turbo Expo 2014: Turbine Technical Conference and Exposition – GT2014, Düsseldorf, Germany

    Google Scholar 

  30. R. Sangi, P. Jahangiri, A. Thamm et al., Dynamic exergy analysis – modelica-based tool development: a case study of CHP district heating in Bottrop, Germany. Therm. Sci. Eng. Prog, S2451904917302214

    Google Scholar 

  31. F. Bünning, R. Sangi, D. Müller, A Modelica library for the agent-based control of building energy systems. Appl. Energy 193, 52–59 (2017)

    Article  Google Scholar 

  32. M. Fadl, P. Stein, L. He, Full conjugate heat transfer modelling for steam turbines in transient operations. Int. J. Therm. Sci. 124, 240–250 (2018)

    Article  Google Scholar 

  33. H. Nikpey, M. Assadi, P. Breuhaus, Development of an optimized artificial neural network model for combined heat and power micro gas turbines [J]. Appl. Energy 108, 137–148 (2013)

    Article  Google Scholar 

  34. T. Palmé, P. Breuhaus, M. Assadi, et al. (2011) Early Warning of Gas Turbine Failure by Nonlinear Feature Extraction Using an Auto-Associative Neural Network Approach[C]// Asme Turbo Expo: Turbine Technical Conference & Exposition. American Society of Mechanical Engineers

    Google Scholar 

  35. Z. Na, C, Ruixian, Explicit analytical part-load performance solution of constant speed single shaft gas turbine and its cogeneration. J. Eng. Therophys. 19(2), 141–144 (1998)

    Google Scholar 

  36. Z. Na, C. Ruixian, Analytical solutions and typical characteristics of part-load performances of single shaft gas turbine and its cogeneration. Energy Convers. Manag. 43(2002), 1323–1337 (2002)

    Google Scholar 

  37. L. Xichao Single-axis gas turbine dynamic simulation. College of Power Engineering, Chongqing University (2006)

    Google Scholar 

  38. G. Evola, N. Le Pierrès, F. Boudehenn et al., Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller. Int. J. Refrig. 36(3), 1015–1028 (2013)

    Article  Google Scholar 

  39. T.V. Nguyen, L. Pierobon, B. Elmegaard et al., Exergetic assessment of energy systems on North Sea oil and gas platforms. Energy 62, 23–36 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuqing Zhang or Peter Breuhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, S. et al. (2020). Modelling, Simulation and Analysis. In: Zobaa, A., Cao, J. (eds) Energy Internet. Springer, Cham. https://doi.org/10.1007/978-3-030-45453-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45453-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45452-4

  • Online ISBN: 978-3-030-45453-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics