Skip to main content

Choice of Stents and Clinical Outcomes in Patients with Chronic Kidney Disease

  • Chapter
  • First Online:
  • 317 Accesses

Abstract

Advances in coronary stent technology have led to iterative reductions in the risk of target vessel revascularization (TVR) as well as stent thrombosis (ST) following percutaneous coronary intervention (PCI). However, patients with chronic kidney disease (CKD) are characterized by unique risk factors that ought to be considered when selecting a coronary stent. In addition to the systemic risk factors in patients with CKD, atherosclerotic lesions are more calcified, longer, and more vulnerable with a larger necrotic core. Nevertheless, post hoc analyses of randomized clinical trials (RCT) suggest that renal impairment does not augment risk for in-stent late loss. Conversely, renal dysfunction is associated with both an increased risk of thrombotic and bleeding complications following PCI. When comparing stent platforms in patients with CKD, second-generation drug-eluting stents (DES) appear more efficacious and safe than bare-metal stents (BMS) with lower risks for TVR, ST, and myocardial infarction (MI). Observational data have questioned the incremental benefit of DES in CKD patients, but it is uncertain how much of the differences are confounded by patient characteristics and study design. RCTs specifically studying post-PCI outcomes in CKD patients are needed along with newer technologies such as polymer-free and antibody-eluting stents to directly address the unique biology and risk factors in CKD patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Serruys PW, Strauss BH, Beatt KJ, et al. Angiographic follow-up after placement of a self-expanding coronary artery stent. Engl J Med. 1991;324(1):13–7.

    CAS  Google Scholar 

  2. Iqbal J, Gunn J, Serruys PW. Coronary stents: historical development, current status and future directions. Br Med Bull. 2013;106(1):193–211.

    CAS  PubMed  Google Scholar 

  3. Park KW, Chae IH, Lim DS, et al. Everolimus-eluting versus sirolimus-eluting stents in patients undergoing percutaneous coronary intervention: the EXCELLENT (efficacy of Xience/Promus versus cypher to reduce late loss after stenting) randomized trial. J Am Coll Cardiol. 2011;58(18):1844–54.

    CAS  PubMed  Google Scholar 

  4. Stone GW, Rizvi A, Newman W, et al. New England journal. Engl J Med. 2010;362(18):1663–74.

    CAS  Google Scholar 

  5. Bangalore S, Gupta N, Guo Y, Feit F. Trend in the use of drug eluting stents in the United States: insight from over 8.1 million coronary interventions. Int J Cardiol. 2014;175(1):108–19.

    PubMed  Google Scholar 

  6. Généreux P, Madhavan MV, Mintz GS, et al. Ischemic outcomes after coronary intervention of calcified vessels in acute coronary syndromes: pooled analysis from the HORIZONS-AMI (Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction) and ACUITY (Acute Catheterization). J Am Coll Cardiol. 2014;63(18):1845–54.

    PubMed  Google Scholar 

  7. Hartzler GO, Rutherford BD, McConahay DR, Johnson WL, Giorgi LV. “High-risk” percutaneous transluminal coronary angioplasty. Am J Cardiol. 1988;61(14):33G–7G.

    CAS  PubMed  Google Scholar 

  8. Suh J, Park DW, Lee JY, et al. The relationship and threshold of stent length with regard to risk of stent thrombosis after drug-eluting stent implantation. JACC Cardiovasc Interv. 2010;3(4):383–9.

    PubMed  Google Scholar 

  9. Latib A, Colombo A. Bifurcation disease. What do we know, what should we do? JACC Cardiovasc Interv. 2008;1(3):218–26.

    PubMed  Google Scholar 

  10. Koskinas KC, Siontis GCM, Piccolo R, et al. Impact of diabetic status on outcomes after revascularization with drug-eluting stents in relation to coronary artery disease complexity: patient-level pooled analysis of 6081 patients. Circ Cardiovasc Interv. 2016;9(2).

    Google Scholar 

  11. Ashrith G, Elayda MA, Wilson JM. Revascularization options in patients with chronic kidney disease. Tex Heart Inst J. 2010;37:9–18.

    PubMed  PubMed Central  Google Scholar 

  12. Kramer H. Association between chronic kidney disease and coronary artery calcification: the Dallas heart study. J Am Soc Nephrol. 2005;16(2):507–13. https://doi.org/10.1681/ASN.2004070610.

    Article  PubMed  Google Scholar 

  13. Yachi S, Tanabe K, Tanimoto S, et al. Clinical and angiographic outcomes following percutaneous coronary intervention with sirolimus-eluting stents versus bare-metal stents in hemodialysis patients. Am J Kidney Dis. 2009;54(2):299–306.

    PubMed  Google Scholar 

  14. Osten MD, Ivanov J, Eichhofer J, et al. Impact of renal insufficiency on angiographic, procedural, and in-Hospital outcomes following percutaneous coronary intervention. Am J Cardiol. 2008;101(6):780–5.

    PubMed  Google Scholar 

  15. Pena J, Vengrenyuk Y, Kezbor S, et al. Increased lipid length, macrophage infiltration, and neovascularization in coronary atheroma from patients with chronic kidney disease. JACC Cardiovasc Imaging. 2017;10(12):1524–6.

    PubMed  Google Scholar 

  16. Kobayashi Y, De Gregorio J, Kobayashi N, et al. Stented segment length as an independent predictor of restenosis. J Am Coll Cardiol. 1999;34(3):651–9.

    CAS  PubMed  Google Scholar 

  17. Marson BP, Poli de Figueiredo CE, Tanus-Santos JE. Imbalanced matrix metalloproteinases in cardiovascular complications of end-stage kidney disease: a potential pharmacological target. Basic Clin Pharmacol Toxicol. 2012;110(5):409–15.

    CAS  PubMed  Google Scholar 

  18. Chen NX, O’Neill KD, Chen X, Kiattisunthorn K, Gattone VH, Moe SM. Activation of arterial matrix metalloproteinases leads to vascular calcification in chronic kidney disease. Am J Nephrol. 2011;34(3):211–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Baber U, Stone GW, Weisz G, et al. Coronary plaque composition, morphology, and outcomes in patients with and without chronic kidney disease presenting with acute coronary syndromes. JACC Cardiovasc Imaging. 2012;5(3):53–61.

    Google Scholar 

  20. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    CAS  PubMed  Google Scholar 

  21. Mauri L, Kereiakes DJ, Yeh RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. Engl J Med. 2014;371(23):2155–66.

    Google Scholar 

  22. Best PJM, Berger PB, Davis BR, et al. Impact of mild or moderate chronic kidney disease on the frequency of restenosis: results from the PRESTO trial. J Am Coll Cardiol. 2004;44(9):1786–91.

    PubMed  Google Scholar 

  23. Halkin A, Mehran R, Casey CW, et al. Impact of moderate renal insufficiency on restenosis and adverse clinical events after paclitaxel-eluting and bare metal stent implantation: results from the TAXUS-IV trial. Am Heart J. 2005;150(6):1163–70.

    CAS  PubMed  Google Scholar 

  24. Stefanini GG, Taniwaki M, Kalesan B, et al. The impact of renal impairment on long-term safety and effectiveness of drug-eluting stents. PLoS One. 2014;9(9):1–9.

    Google Scholar 

  25. Baber U, Giustino G, Sartori S, et al. Effect of chronic kidney disease in women undergoing percutaneous coronary intervention with drug-eluting stents. JACC Cardiovasc Interv 2016;9(1):28–38. https://doi.org/10.1016/j.jcin.2015.09.023.

  26. Crimi G, Leonardi S, Costa F, Adamo M, Ariotti S, Valgimigli M. Role of stent type and of duration of dual antiplatelet therapy in patients with chronic kidney disease undergoing percutaneous coronary interventions. Is bare metal stent implantation still a justifiable choice? Int J Cardiol. 2016;212:110–7.

    PubMed  Google Scholar 

  27. Nakazawa G, Tanabe K, Aoki J, et al. Impact of renal insufficiency on clinical and angiographic outcomes following percutaneous coronary intervention with sirolimus-eluting stents. Catheter Cardiovasc Interv. 2007;69(6):808–14.

    PubMed  Google Scholar 

  28. Lee JM, Kang J, Lee E, et al. Chronic kidney disease in the second-generation drug-eluting stent era: pooled analysis of the Korean multicenter drug-eluting stent registry. JACC Cardiovasc Interv. 2016;9(20):2097–109.

    PubMed  Google Scholar 

  29. Cai Q, Mukku VK, Ahmad M. Coronary artery disease in patients with chronic kidney disease: a clinical update. Curr Cardiol Rev. 2013;9(4):331–9.

    PubMed  PubMed Central  Google Scholar 

  30. Stone GW, Witzenbichler B, Weisz G, et al. Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents ( ADAPT-DES ): a prospective multicentre registry study. Lancet. 2013;382:614–23.

    PubMed  Google Scholar 

  31. Lutz J, Menke J, Sollinger D, Schinzel H, Thürmel K. Haemostasis in chronic kidney disease. Nephrol Dial Transplant. 2014;29(1):29–40.

    CAS  PubMed  Google Scholar 

  32. Inoue T, Croce K, Morooka T, Sakuma M, Node K, Simon DI. Vascular inflammation and repair: implications for Reendothelialization, Restenosis, and Stent Thrombosis Teruo. Jacc Cardiovas Intervent. 2011;4(10):1057–66.

    Google Scholar 

  33. Tanios BY, Itani HS, Zimmerman DL. Clopidogrel use in end-stage kidney disease. Semin Dial. 2015;28(3):276–81.

    PubMed  Google Scholar 

  34. Tanrikulu A, Ozben B, Koc M, Papila-Topal N, Ozben T, Caymaz O. Aspirin resistance in patients with chronic renal failure. J Nephrol. 2011;24(5):636–46.

    CAS  PubMed  Google Scholar 

  35. Davila CD, Vargas F, Huang KG, Dimou A, Rangaswami J, Figueredo VM. Dipstick proteinuria is an independent predictor of high on treatment platelet reactivity in patients on clopidogrel, but not aspirin, admitted for major adverse cardiovascular events platelet reactivity in patients on clopidogrel, but not aspirin. Platelets. 2014;26(7).

    Google Scholar 

  36. Baber U, Chandrasekhar J, Sartori S, et al. Associations between chronic kidney disease and outcomes with use of Prasugrel versus Clopidogrel in patients with acute coronary syndrome undergoing percutaneous coronary intervention. JACC Cardiovasc Interv. 2017;10(20):2017–25.

    PubMed  Google Scholar 

  37. Wanitschek M, Pfisterer M, Hvelplund A, et al. Long-term benefits and risks of drug-eluting compared to bare-metal stents in patients with versus without chronic kidney disease. Int J Cardiol. 2013;168(3):2381–8.

    PubMed  Google Scholar 

  38. Nikolsky E, Mehran R, Turcot D, et al. Impact of chronic kidney disease on prognosis of patients with diabetes mellitus treated with percutaneous coronary intervention. Am J Cardiol. 2004;94:300–5.

    PubMed  Google Scholar 

  39. Chhatriwalla AK, Amin AP, Kennedy KF, et al. Association between bleeding events and in-hospital mortality after percutaneous coronary intervention. JAMA. 2013;309(10):1022–9.

    CAS  PubMed  Google Scholar 

  40. Mehran R, Pocock S, Nikolsky E, et al. Impact of bleeding on mortality after percutaneous coronary intervention; results from a patient-level pooled analysis of the REPLACE-2 (Randomized Evaluation of PCI Linking Angiomax to Reduced Clinical Events), ACUITY (Acute Catheterization and Urgent In). JACC Cardiovasc Interv. 2011;4(6):654–64.

    PubMed  Google Scholar 

  41. Vora AN, Stanislawski M, Grunwald GK, et al. Association between chronic kidney disease and rates of transfusion and progression to end-stage renal disease in patients undergoing transradial versus transfemoral cardiac catheterization-an analysis from the veterans affairs clinical assessment report. J Am Heart Assoc. 2017;6(4).

    Google Scholar 

  42. Gargiulo G, Santucci A, Piccolo R, et al. Impact of chronic kidney disease on 2-year clinical outcomes in patients treated with 6-month or 24-month DAPT duration: an analysis from the PRODIGY trial. Catheter Cardiovasc Interv. 2017;90(4):E73–84.

    PubMed  Google Scholar 

  43. Baber U, Li SX, Pinnelas R, et al. Incidence, patterns, and impact of dual antiplatelet therapy cessation among patients with and without chronic kidney disease undergoing percutaneous coronary intervention results from the PARIS Registry (Patterns of Non-Adherence to Anti-Platelet Regimen). 2018.

    Google Scholar 

  44. Garg P, Charytan DM, Novack L, et al. Impact of moderate renal insufficiency on restenosis and adverse clinical events after sirolimus-eluting and bare metal stent implantation (from the SIRIUS trials). Am J Cardiol. 2010;106(10):1436–42.

    CAS  PubMed  Google Scholar 

  45. Tomai F, Ribichini F, De Luca L, et al. Randomized comparison of Xience v and multi-link vision coronary stents in the same multivessel patient with chronic kidney disease (RENAL-DES) study. Circulation. 2014;129(10):1104–12.

    CAS  PubMed  Google Scholar 

  46. Tu JV, Bowen J, Chiu M, et al. Effectiveness and safety of drug-eluting stents in Ontario. N Engl J Med. 2007;357(14):1393–402.

    CAS  PubMed  Google Scholar 

  47. Saltzman AJ, Stone GW, Claessen BE, et al. Long-term impact of chronic kidney disease in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. JACC Cardiovasc Interv. 2011;4(9):1011–9.

    PubMed  Google Scholar 

  48. Tsai TT, Ms C, Messenger JC, et al. Safety and efficacy of drug-eluting stents in older patients with chronic kidney disease a report from the linked CathPCI registry – CMS claims database. J Am Coll Cardiol. 2011;58(18):1859–69.

    CAS  PubMed  Google Scholar 

  49. Simsek C, Magro M, Boersma E, et al. Impact of renal insufficiency on safety and efficacy of drug-eluting stents compared to bare-metal stents at 6 years. Catheter Cardiovasc Interv. 2012;80(1):18–26.

    PubMed  Google Scholar 

  50. Charytan DM, Varma MR, Silbaugh TS, Lovett AF, Normand SLT, Mauri L. Long-term clinical outcomes following drug-eluting or bare-metal stent placement in patients with severely reduced GFR: results of the Massachusetts data analysis center (mass-DAC) state registry. Am J Kidney Dis. 2011;57(2):202–11.

    CAS  PubMed  Google Scholar 

  51. De Jager DJ, Vervloet MG, Dekker FW. Noncardiovascular mortality in CKD: an epidemiological perspective. Nat Rev Nephrol. 2014;10(4):208–14.

    PubMed  Google Scholar 

  52. Sharma R, Pellerin D, Gaze DC, et al. Dobutamine stress echocardiography and the resting but not exercise electrocardiograph predict severe coronary artery disease in renal transplant candidates. Nephrol Dial Transplant. 2005;20(10):2207–14.

    PubMed  Google Scholar 

  53. Devon HA, Rosenfeld A, Steffen AD, Daya M. Sensitivity, specificity, and sex differences in symptoms reported on the 13-item acute coronary syndrome checklist. J Am Heart Assoc. 2014;3(2):1–10.

    Google Scholar 

  54. McCullough PA, Nowak RM, Foreback C, et al. Emergency evaluation of chest pain in patients with advanced kidney disease. Arch Intern Med. 2002;162(21):2464–8.

    PubMed  Google Scholar 

  55. Nakazawa G, Finn AV, Kolodgie FD, Virmani R. A review of current devices and a look at new technology: drug-eluting stents. Expert Rev Med Devices. 2009;6(1):33–42.

    CAS  PubMed  Google Scholar 

  56. Palmerini T, Biondi-Zoccai G, Riva D, Della, et al. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. Lancet. 2012;379(9824):1393–402.

    CAS  PubMed  Google Scholar 

  57. Romaguera R, Gómez-Hospital JA, Gomez-Lara J, et al. A randomized comparison of reservoir-based polymer-free Amphilimus-eluting stents versus Everolimus-eluting stents with durable polymer in patients with diabetes mellitus the RESERVOIR clinical trial. JACC Cardiovasc Interv. 2016;9(1):42–50.

    PubMed  Google Scholar 

  58. Krucoff MW, Saito S. HARMONEE: a randomized trial of a bioabsorbable polymer-based DES with a luminal CD34+ antibody coating vs a durable polymer-based DES in patients with coronary artery disease. Transcatheter Cardiovasc Ther Sci Symp. 2017.

    Google Scholar 

  59. Urban P, Meredith IT, Abizaid A, et al. Polymer-free drug-coated coronary stents in patients at high bleeding risk. Engl J Med. 2015;373(21):2038–47.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usman Baber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, S.X., Baber, U. (2020). Choice of Stents and Clinical Outcomes in Patients with Chronic Kidney Disease. In: Rangaswami, J., Lerma, E., McCullough, P. (eds) Kidney Disease in the Cardiac Catheterization Laboratory . Springer, Cham. https://doi.org/10.1007/978-3-030-45414-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45414-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45413-5

  • Online ISBN: 978-3-030-45414-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics