Skip to main content

Biomarkers of Acute Kidney Injury and Scope of Utilization in the Cardiac Catheterization Laboratory

  • Chapter
  • First Online:
Kidney Disease in the Cardiac Catheterization Laboratory

Abstract

The risk of contrast induced acute kidney injury (CI-AKI) poses a challenge for ambulatory cardiac procedures. The advent of more complicated procedures being performed on an older and more clinically complex patient population is offset by the increased safety of low-osmolality contrast media and advances in procedural techniques to minimize AKI. The validation and use of biomarkers for AKI has been demonstrated in various studies, including risk assessment and prognostication of CI-AKI. Biomarkers such as Cystatin-C, L-FABP, TIMP2∗ IFGBP7, NGAL and KIM-1 show promise because of their performance in predicting AKI in different high risk settings; however the role of established AKI biomarkers in mitigating AKI risk in the cardiac catheterization laboratory is continuously evolving. Future studies that validate the use of biomarkers of kidney injury in different contexts in the cardiac catheterization laboratory will help delineate best clinical practices that will identify AKI in a time sensitive fashion, and result in reduction of AKI associated morbidity, mortality and health care costs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabahn RC, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2016;68(13):1465–73.

    PubMed  Google Scholar 

  2. McCullough PA, Wolyn R, Rocher LL, Levin RN, O'Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103(5):368–75.

    CAS  PubMed  Google Scholar 

  3. Briguori C, Visconti G, Ricciardelli B, Condorelli G. Renal insufficiency following contrast media administration trial II (REMEDIAL II): RenalGuard system in high-risk patients for contrast-induced acute kidney injury: rationale and design. EuroIntervention. 2011;6(9):1117–22.. 7

    PubMed  Google Scholar 

  4. Mehran R, Nikolsky E. Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int Suppl. 2006;100:S11–5.

    CAS  Google Scholar 

  5. Detrenis S, Meschi M, Musini S, Savazzi G. Lights and shadows on the pathogenesis of contrast-induced nephropathy: state of the art. Nephrol Dial Transplant. 2005;20(8):1542–50.

    PubMed  Google Scholar 

  6. Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320(3):143–9.

    CAS  PubMed  Google Scholar 

  7. Parfrey P. The clinical epidemiology of contrast-induced nephropathy. Cardiovasc Intervent Radiol. 2005;28(Suppl 2):S3–11.

    PubMed  Google Scholar 

  8. Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105(19):2259–64.

    PubMed  Google Scholar 

  9. Connolly M, Kinnin M, McEneaney D, Menown I, Kurth M, Lamont J, et al. Prediction of contrast induced acute kidney injury using novel biomarkers following contrast coronary angiography. QJM. 2018;111(2):103–10.

    CAS  PubMed  Google Scholar 

  10. Solomon RJ, Mehran R, Natarajan MK, Doucet S, Katholi RE, Staniloae CS, et al. Contrast-induced nephropathy and long-term adverse events: cause and effect? Clin J Am Soc Nephrol. 2009;4(7):1162–9.

    PubMed  PubMed Central  Google Scholar 

  11. Robert AM, Brown JR, Sidhu MS, Ramanath VS, Devries JT, Jayne JE, et al. The evaluation of creatinine clearance, estimated glomerular filtration rate and serum creatinine in predicting contrast-induced acute kidney injury among patients undergoing percutaneous coronary intervention. Cardiovasc Revasc Med. 2012;13(1):3–10.

    PubMed  Google Scholar 

  12. Andreucci M, Faga T, Pisani A, Perticone M, Michael A. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice. Eur J Intern Med. 2017;39:1–8.

    CAS  PubMed  Google Scholar 

  13. Tasanarong A, Hutayanon P, Piyayotai D. Urinary Neutrophil Gelatinase-Associated Lipocalin predicts the severity of contrast-induced acute kidney injury in chronic kidney disease patients undergoing elective coronary procedures. BMC Nephrol. 2013;14:270.

    PubMed  PubMed Central  Google Scholar 

  14. Malyszko J, Bachorzewska-Gajewska H, Dobrzycki S. Biomarkers of contrast-induced nephropathy: which ones and what is their clinical relevance? Interv Cardiol Clin. 2014;3(3):379–91.

    PubMed  Google Scholar 

  15. Dusse F, Edayadiyil-Dudasova M, Thielmann M, Wendt D, Kahlert P, Demircioglu E, et al. Early prediction of acute kidney injury after transapical and transaortic aortic valve implantation with urinary G1 cell cycle arrest biomarkers. BMC Anesthesiol. 2016;16:76.

    PubMed  PubMed Central  Google Scholar 

  16. Thongprayoon C, Cheungpasitporn W, Srivali N, Ungprasert P, Kittanamongkolchai W, Greason KL, et al. Acute kidney injury after transcatheter aortic valve replacement: a systematic review and meta-analysis. Am J Nephrol. 2015;41(4–5):372–82.

    PubMed  Google Scholar 

  17. Yamamoto M, Hayashida K, Mouillet G, Chevalier B, Meguro K, Watanabe Y, et al. Renal function-based contrast dosing predicts acute kidney injury following transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2013;6(5):479–86.

    PubMed  Google Scholar 

  18. Rollins K, Noorani A, Janeckova L, Jones T, Griffiths M, Baker MP, et al. Ascorbic acid ameliorates renal injury in a murine model of contrast-induced nephropathy. BMC Nephrol. 2017;18(1):101.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Humes HD, Hunt DA, White MD. Direct toxic effect of the radiocontrast agent diatrizoate on renal proximal tubule cells. Am J Phys. 1987;252(2 Pt 2):F246–55.

    CAS  Google Scholar 

  20. Eng J, Wilson RF, Subramaniam RM, Zhang A, Suarez-Cuervo C, Turban S, et al. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):417–24.

    PubMed  Google Scholar 

  21. Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol. 2008;191(2):376–82.

    PubMed  Google Scholar 

  22. Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol. 2017;28(2):653–9.

    PubMed  Google Scholar 

  23. Lopez-Ruiz A, Chandrashekar K, Juncos LA. Changing paradigms in contrast nephropathy. J Am Soc Nephrol. 2017;28(2):397–9.

    PubMed  PubMed Central  Google Scholar 

  24. Narula A, Mehran R, Weisz G, Dangas GD, Yu J, Genereux P, et al. Contrast-induced acute kidney injury after primary percutaneous coronary intervention: results from the HORIZONS-AMI substudy. Eur Heart J. 2014;35(23):1533–40.

    CAS  PubMed  Google Scholar 

  25. Jeong BY, Lee HY, Park CG, Kang J, Yu SL, Choi DR, et al. Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury. PLoS One. 2018;13(1):e0191034.

    PubMed  PubMed Central  Google Scholar 

  26. Weisbord SD, Palevsky PM. Acute kidney injury: kidney injury after contrast media: marker or mediator? Nat Rev Nephrol. 2010;6(11):634–6.

    PubMed  Google Scholar 

  27. Pisani A, Riccio E, Andreucci M, Faga T, Ashour M, Di Nuzzi A, et al. Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. Biomed Res Int. 2013;2013:868321.

    PubMed  PubMed Central  Google Scholar 

  28. Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv. 2014;7(1):1–9.

    PubMed  PubMed Central  Google Scholar 

  29. Guitterez NV, Diaz A, Timmis GC, O'Neill WW, Stevens MA, Sandberg KR, et al. Determinants of serum creatinine trajectory in acute contrast nephropathy. J Interv Cardiol. 2002;15(5):349–54.

    PubMed  Google Scholar 

  30. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.

    PubMed  Google Scholar 

  31. Meersch M, Schmidt C, Van Aken H, Rossaint J, Gorlich D, Stege D, et al. Validation of cell-cycle arrest biomarkers for acute kidney injury after pediatric cardiac surgery. PLoS One. 2014;9(10):e110865.

    PubMed  PubMed Central  Google Scholar 

  32. Chen YL, Fu NK, Xu J, Yang SC, Li S, Liu YY, et al. A simple preprocedural score for risk of contrast-induced acute kidney injury after percutaneous coronary intervention. Catheter Cardiovasc Interv. 2014;83(1):E8–16.

    PubMed  Google Scholar 

  33. Bell M, Granath F, Martensson J, Lofberg E, Ekbom A, Martling CR. Cystatin C is correlated with mortality in patients with and without acute kidney injury. Nephrol Dial Transplant. 2009;24(10):3096–102.

    CAS  PubMed  Google Scholar 

  34. Andreucci M, Faga T, Riccio E, Sabbatini M, Pisani A, Michael A. The potential use of biomarkers in predicting contrast-induced acute kidney injury. Int J Nephrol Renovasc Dis. 2016;9:205–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Herget-Rosenthal S, Marggraf G, Husing J, Goring F, Pietruck F, Janssen O, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66(3):1115–22.

    CAS  PubMed  Google Scholar 

  36. Kurtul A, Murat SN, Yarlioglues M, Duran M, Ocek AH, Celik IE, et al. Procalcitonin as an early predictor of contrast-induced acute kidney injury in patients with acute coronary syndromes who underwent percutaneous coronary intervention. Angiology. 2015;66(10):957–63.

    CAS  PubMed  Google Scholar 

  37. Hirsch R, Dent C, Pfriem H, Allen J, Beekman RH 3rd, Ma Q, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 2007;22(12):2089–95.

    PubMed  Google Scholar 

  38. Dai B, Liu Y, Fu L, Li Y, Zhang J, Mei C. Effect of theophylline on prevention of contrast-induced acute kidney injury: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2012;60(3):360–70.

    CAS  PubMed  Google Scholar 

  39. McCullough PA, Larsen T, Brown JR. Theophylline or aminophylline for the prevention of contrast-induced acute kidney injury. Am J kidney Dis. 2012;60(3):338–9.

    PubMed  Google Scholar 

  40. Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378(7):603–14.

    CAS  PubMed  Google Scholar 

  41. Palli E, Makris D, Papanikolaou J, Garoufalis G, Tsilioni I, Zygoulis P, et al. The impact of N-acetylcysteine and ascorbic acid in contrast-induced nephropathy in critical care patients: an open-label randomized controlled study. Crit Care. 2017;21(1):269.

    PubMed  PubMed Central  Google Scholar 

  42. Majumdar SR, Kjellstrand CM, Tymchak WJ, Hervas-Malo M, Taylor DA, Teo KK. Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J kidney Dis. 2009;54(4):602–9.

    CAS  PubMed  Google Scholar 

  43. Naeem M, McEnteggart GE, Murphy TP, Prince E, Ahn S, Soares G. Fenoldopam for the prevention of contrast-induced nephropathy (CIN)-do we need more trials? A meta-analysis. Clin Imaging. 2015;39(5):759–64.

    PubMed  Google Scholar 

  44. Stone GW, McCullough PA, Tumlin JA, Lepor NE, Madyoon H, Murray P, et al. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA. 2003;290(17):2284–91.

    CAS  PubMed  Google Scholar 

  45. Lassnigg A, Donner E, Grubhofer G, Presterl E, Druml W, Hiesmayr M. Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol. 2000;11(1):97–104.

    CAS  PubMed  Google Scholar 

  46. Gare M, Haviv YS, Ben-Yehuda A, Rubinger D, Bdolah-Abram T, Fuchs S, et al. The renal effect of low-dose dopamine in high-risk patients undergoing coronary angiography. J Am Coll Cardiol. 1999;34(6):1682–8.

    CAS  PubMed  Google Scholar 

  47. Kassis HM, Minsinger KD, McCullough PA, Block CA, Sidhu MS, Brown JR. A review of the use of Iloprost, a synthetic prostacyclin, in the prevention of radiocontrast nephropathy in patients undergoing coronary angiography and intervention. Clin Cardiol. 2015;38(8):492–8.

    PubMed  PubMed Central  Google Scholar 

  48. Yang Y, Wu YX, Hu YZ. Rosuvastatin treatment for preventing contrast-induced acute kidney injury after cardiac catheterization: a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2015;94(30):e1226.

    CAS  Google Scholar 

  49. Putzu A, Boscolo Berto M, Belletti A, Pasotti E, Cassina T, Moccetti T, et al. Prevention of contrast-induced acute kidney injury by furosemide with matched hydration in patients undergoing interventional procedures: a systematic review and meta-analysis of randomized trials. JACC Cardiovasc Interv. 2017;10(4):355–63.

    PubMed  Google Scholar 

  50. Briguori C, Quintavalle C, Donnarumma E, Condorelli G. Novel biomarkers for contrast-induced acute kidney injury. Biomed Res Int. 2014;2014:568738.

    PubMed  PubMed Central  Google Scholar 

  51. Vanmassenhove J, Vanholder R, Nagler E, Van Biesen W. Urinary and serum biomarkers for the diagnosis of acute kidney injury: an in-depth review of the literature. Nephrol Dial Transplant. 2013;28(2):254–73.

    CAS  PubMed  Google Scholar 

  52. Waring WS, Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol. 2011;49(8):720–8.

    CAS  Google Scholar 

  53. Parikh A, Rizzo JA, Canetta P, Forster C, Sise M, Maarouf O, et al. Does NGAL reduce costs? A cost analysis of urine NGAL (uNGAL) & serum creatinine (sCr) for acute kidney injury (AKI) diagnosis. PLoS One. 2017;12(5):e0178091.

    PubMed  PubMed Central  Google Scholar 

  54. Ostermann M, Philips BJ, Forni LG. Clinical review: biomarkers of acute kidney injury: where are we now? Crit Care. 2012;16(5):233.

    PubMed  PubMed Central  Google Scholar 

  55. Hoste EA, McCullough PA, Kashani K, Chawla LS, Joannidis M, Shaw AD, et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol Dial Transplant. 2014;29(11):2054–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun SQ, Zhang T, Ding D, Zhang WF, Wang XL, Sun Z, et al. Circulating MicroRNA-188, -30a, and -30e as early biomarkers for contrast-induced acute kidney injury. J Am Heart Assoc. 2016;5(8). [epub ahead of print]

    Google Scholar 

  57. Briguori C, Visconti G, Focaccio A, Donahue M, Golia B, Selvetella L, et al. Novel approaches for preventing or limiting events (NAPLES III) trial: randomised comparison of bivalirudin versus unfractionated heparin in patients at high risk of bleeding undergoing elective coronary stenting throught the femoral approach. Rationale and design. Cardiovasc Drugs Ther. 2014;28(3):273–9.

    CAS  PubMed  Google Scholar 

  58. Koyner JL, Garg AX, Coca SG, Sint K, Thiessen-Philbrook H, Patel UD, et al. Biomarkers predict progression of acute kidney injury after cardiac surgery. J Am Soc Nephrol. 2012;23(5):905–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Stacul F, van der Molen AJ, Reimer P, Webb JA, Thomsen HS, Morcos SK, et al. Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur Radiol. 2011;21(12):2527–41.

    PubMed  Google Scholar 

  60. Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th acute Dialysis quality initiative consensus conference. Kidney Int. 2014;85(3):513–21.

    PubMed  Google Scholar 

  61. Schilcher G, Ribitsch W, Otto R, Portugaller RH, Quehenberger F, Truschnig-Wilders M, et al. Early detection and intervention using neutrophil gelatinase-associated lipocalin (NGAL) may improve renal outcome of acute contrast media induced nephropathy: a randomized controlled trial in patients undergoing intra-arterial angiography (ANTI-CIN Study). BMC Nephrol. 2011;12:39.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Akrawinthawong K, Ricci J, Cannon L, Dixon S, Kupfer K, Stivers D, et al. Subclinical and clinical contrast-induced acute kidney injury: data from a novel blood marker for determining the risk of developing contrast-induced nephropathy (ENCINO), a prospective study. Ren Fail. 2015;37(2):187–91.

    CAS  PubMed  Google Scholar 

  63. The ad-hoc working group of E, Fliser D, Laville M, Covic A, Fouque D, Vanholder R, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) Clinical Practice Guidelines on Acute Kidney Injury: Part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27(12):4263–72.

    Google Scholar 

  64. Ronco C, Stacul F, McCullough PA. Subclinical acute kidney injury (AKI) due to iodine-based contrast media. Eur Radiol. 2013;23(2):319–23.

    PubMed  Google Scholar 

  65. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Critical Care. 2013;17(1):204.

    PubMed  PubMed Central  Google Scholar 

  66. Sjostrom P, Tidman M, Jones I. The shorter T1/2 of cystatin C explains the earlier change of its serum level compared to serum creatinine. Clin Nephrol. 2004;62(3):241–2.

    CAS  PubMed  Google Scholar 

  67. Perianayagam MC, Seabra VF, Tighiouart H, Liangos O, Jaber BL. Serum cystatin C for prediction of dialysis requirement or death in acute kidney injury: a comparative study. Am J Kidney Dis. 2009;54(6):1025–33.

    CAS  PubMed  Google Scholar 

  68. Park MY, Choi SJ, Kim JK, Hwang SD, Lee YW. Urinary cystatin C levels as a diagnostic and prognostic biomarker in patients with acute kidney injury. Nephrology (Carlton). 2013;18(4):256–62.

    CAS  Google Scholar 

  69. Briguori C, Visconti G, Rivera NV, Focaccio A, Golia B, Giannone R, et al. Cystatin C and contrast-induced acute kidney injury. Circulation. 2010;121(19):2117–22.

    CAS  PubMed  Google Scholar 

  70. Cecchi E, Avveduto G, D'Alfonso MG, Terreni A, Gelera E, Caldini A, et al. Cystatin C, but not urinary or serum NGAL, may be associated with contrast induced nephropathy after percutaneous coronary invasive procedures: a single center experience on a limited number of patients. Acta Med Acad. 2017;46(1):34–43.

    PubMed  Google Scholar 

  71. Jernberg T, Lindahl B, James S, Larsson A, Hansson LO, Wallentin L. Cystatin C: a novel predictor of outcome in suspected or confirmed non-ST-elevation acute coronary syndrome. Circulation. 2004;110(16):2342–8.

    CAS  PubMed  Google Scholar 

  72. Sai E, Shimada K, Miyauchi K, Masaki Y, Kojima T, Miyazaki T, et al. Increased cystatin C levels as a risk factor of cardiovascular events in patients with preserved estimated glomerular filtration rate after elective percutaneous coronary intervention with drug-eluting stents. Heart Vessel. 2016;31(5):694–701.

    Google Scholar 

  73. Nejat M, Hill JV, Pickering JW, Edelstein CL, Devarajan P, Endre ZH. Albuminuria increases cystatin C excretion: implications for urinary biomarkers. Nephrol Dial Transplant. 2012;27(Suppl 3):iii96–103.

    CAS  PubMed  Google Scholar 

  74. Royakkers AA, Korevaar JC, van Suijlen JD, Hofstra LS, Kuiper MA, Spronk PE, et al. Serum and urine cystatin C are poor biomarkers for acute kidney injury and renal replacement therapy. Intensive Care Med. 2011;37(3):493–501.

    CAS  PubMed  Google Scholar 

  75. Price RG. Urinary N-acetyl-beta-D-glucosaminidase (NAG) as an indicator of renal disease. Curr Probl Clin Biochem. 1979;(9):150–63.

    Google Scholar 

  76. Price RG. The role of NAG (N-acetyl-beta-D-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol. 1992;38(Suppl 1):S14–9.

    PubMed  Google Scholar 

  77. Westhuyzen J, Endre ZH, Reece G, Reith DM, Saltissi D, Morgan TJ. Measurement of tubular enzymuria facilitates early detection of acute renal impairment in the intensive care unit. Nephrol Dial Transplant. 2003;18(3):543–51.

    CAS  PubMed  Google Scholar 

  78. Liangos O, Perianayagam MC, Vaidya VS, Han WK, Wald R, Tighiouart H, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007;18(3):904–12.

    CAS  PubMed  Google Scholar 

  79. Ren L, Ji J, Fang Y, Jiang SH, Lin YM, Bo J, et al. Assessment of urinary N-acetyl-beta-glucosaminidase as an early marker of contrast-induced nephropathy. J Int Med Res. 2011;39(2):647–53.

    CAS  PubMed  Google Scholar 

  80. Benzer M, Alpay H, Baykan O, Erdem A, Demir IH. Serum NGAL, cystatin C and urinary NAG measurements for early diagnosis of contrast-induced nephropathy in children. Ren Fail. 2016;38(1):27–34.

    CAS  PubMed  Google Scholar 

  81. Semerci T, Cuhadar S, Akcay FA, Aydin TK, Atay A, Koseoglu M, et al. Comparing the renal safety of isoosmolar versus low-osmolar contrast medium by renal biomarkers N-acetyl-beta-D-glucosaminidase and endothelin. Angiology. 2014;65(2):108–12.

    PubMed  Google Scholar 

  82. Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62(1):237–44.

    CAS  PubMed  Google Scholar 

  83. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009;24(11):3265–8.

    CAS  PubMed  Google Scholar 

  84. Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 2004;286(3):F552–63.

    CAS  PubMed  Google Scholar 

  85. Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P, et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 2008;73(7):863–9.

    CAS  PubMed  Google Scholar 

  86. Akdeniz D, Celik HT, Kazanci F, Yilmaz H, Yalcin S, Bilgic MA, et al. Is kidney injury molecule 1 a valuable tool for the early diagnosis of contrast-induced nephropathy? J Investig Med. 2015;63(8):930–4.

    CAS  PubMed  Google Scholar 

  87. Kooiman J, van de Peppel WR, Sijpkens YW, Brulez HF, de Vries PM, Nicolaie MA, et al. No increase in Kidney Injury Molecule-1 and Neutrophil Gelatinase-Associated Lipocalin excretion following intravenous contrast enhanced-CT. Eur Radiol. 2015;25(7):1926–34.

    PubMed  PubMed Central  Google Scholar 

  88. Wybraniec MT, Mizia-Stec K. Renalase and biomarkers of contrast-induced acute kidney injury. Cardiorenal Med. 2015;6(1):25–36.

    PubMed  PubMed Central  Google Scholar 

  89. Doi K, Noiri E, Sugaya T. Urinary L-type fatty acid-binding protein as a new renal biomarker in critical care. Curr Opin Crit Care. 2010;16(6):545–9.

    PubMed  Google Scholar 

  90. Katoh H, Nozue T, Kimura Y, Nakata S, Iwaki T, Kawano M, et al. Elevation of urinary liver-type fatty acid-binding protein as predicting factor for occurrence of contrast-induced acute kidney injury and its reduction by hemodiafiltration with blood suction from right atrium. Heart Vessel. 2014;29(2):191–7.

    Google Scholar 

  91. Nakamura T, Sugaya T, Node K, Ueda Y, Koide H. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am J Kidney Dis. 2006;47(3):439–44.

    CAS  PubMed  Google Scholar 

  92. Ivanisevic I, Peco-Antic A, Vulicevic I, Hercog D, Milovanovic V, Kotur-Stevuljevic J, et al. L-FABP can be an early marker of acute kidney injury in children. Pediatr Nephrol. 2013;28(6):963–9.

    PubMed  Google Scholar 

  93. Doi K, Negishi K, Ishizu T, Katagiri D, Fujita T, Matsubara T, et al. Evaluation of new acute kidney injury biomarkers in a mixed intensive care unit. Crit Care Med. 2011;39(11):2464–9.

    CAS  PubMed  Google Scholar 

  94. Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3):e93460.

    PubMed  PubMed Central  Google Scholar 

  95. Vijayan A, Faubel S, Askenazi DJ, Cerda J, Fissell WH, Heung M, et al. Clinical use of the urine biomarker [TIMP-2] x [IGFBP7] for acute kidney injury risk assessment. Am J Kidney Dis. 2016;68(1):19–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tecson KM, Erhardtsen E, Eriksen PM, Gaber AO, Germain M, Golestaneh L, et al. Optimal cut points of plasma and urine neutrophil gelatinase-associated lipocalin for the prediction of acute kidney injury among critically ill adults: retrospective determination and clinical validation of a prospective multicentre study. BMJ Open. 2017;7(7):e016028.

    PubMed  PubMed Central  Google Scholar 

  97. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.

    PubMed  PubMed Central  Google Scholar 

  98. Honore PM, Nguyen HB, Gong M, Chawla LS, Bagshaw SM, Artigas A, et al. Urinary tissue inhibitor of Metalloproteinase-2 and insulin-like growth factor-binding protein 7 for risk stratification of acute kidney injury in patients with Sepsis. Crit Care Med. 2016;44(10):1851–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zager RA, Johnson AC, Becker K. Renal cortical lactate dehydrogenase: a useful, accurate, quantitative marker of in vivo tubular injury and acute renal failure. PLoS One. 2013;8(6):e66776.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rouse RL, Stewart SR, Thompson KL, Zhang J. Kidney injury biomarkers in hypertensive, diabetic, and nephropathy rat models treated with contrast media. Toxicol Pathol. 2013;41(4):662–80.

    PubMed  Google Scholar 

  101. Malyszko J, Bachorzewska-Gajewska H, Koc-Zorawska E, Malyszko JS, Kobus G, Dobrzycki S. Midkine: a novel and early biomarker of contrast-induced acute kidney injury in patients undergoing percutaneous coronary interventions. Biomed Res Int. 2015;2015:879509.

    PubMed  PubMed Central  Google Scholar 

  102. Wybraniec MT, Bozentowicz-Wikarek M, Chudek J, Mizia-Stec K. Pre-procedural renal resistive index accurately predicts contrast-induced acute kidney injury in patients with preserved renal function submitted to coronary angiography. Int J Cardiovasc Imaging. 2017;33(5):595–604.

    PubMed  Google Scholar 

  103. Wybraniec MT, Chudek J, Bozentowicz-Wikarek M, Mizia-Stec K. Prediction of contrast-induced acute kidney injury by early post-procedural analysis of urinary biomarkers and intra-renal Doppler flow indices in patients undergoing coronary angiography. J Interv Cardiol. 2017;30(5):465–72.

    PubMed  Google Scholar 

  104. Schneider AG, Bellomo R, Reade M, Peck L, Young H, Eastwood GM, et al. Safety evaluation of a trial of lipocalin-directed sodium bicarbonate infusion for renal protection in at-risk critically ill patients. Critl Care Resusc. 2013;15(2):126–33.

    Google Scholar 

  105. Filiopoulos V, Biblaki D, Vlassopoulos D. Neutrophil gelatinase-associated lipocalin (NGAL): a promising biomarker of contrast-induced nephropathy after computed tomography. Ren Fail. 2014;36(6):979–86.

    PubMed  Google Scholar 

  106. Quintavalle C, Anselmi CV, De Micco F, Roscigno G, Visconti G, Golia B, et al. Neutrophil gelatinase-associated lipocalin and contrast-induced acute kidney injury. Circ Cardiovasc Interv. 2015;8(9):e002673.

    CAS  PubMed  Google Scholar 

  107. Liebetrau C, Gaede L, Doerr O, Blumenstein J, Rixe J, Teichert O, et al. Neutrophil gelatinase-associated lipocalin (NGAL) for the early detection of contrast-induced nephropathy after percutaneous coronary intervention. Scand J Clin Lab Invest. 2014;74(2):81–8.

    CAS  PubMed  Google Scholar 

  108. Shapiro NI, Trzeciak S, Hollander JE, Birkhahn R, Otero R, Osborn TM, et al. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med. 2009;37(1):96–104.

    PubMed  Google Scholar 

  109. Doi K, Katagiri D, Negishi K, Hasegawa S, Hamasaki Y, Fujita T, et al. Mild elevation of urinary biomarkers in prerenal acute kidney injury. Kidney Int. 2012;82(10):1114–20.

    CAS  PubMed  Google Scholar 

  110. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, et al. The outcome of neutrophil gelatinase-associated Lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57(17):1752–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Cruz DN, de Cal M, Garzotto F, Perazella MA, Lentini P, Corradi V, et al. Plasma neutrophil gelatinase-associated lipocalin is an early biomarker for acute kidney injury in an adult ICU population. Intensive Care Med. 2010;36(3):444–51.

    CAS  PubMed  Google Scholar 

  112. de Geus HR, Woo JG, Wang Y, Devarajan P, Betjes MG, le Noble JL, et al. Urinary neutrophil gelatinase-associated lipocalin measured on admission to the intensive care unit accurately discriminates between sustained and transient acute kidney injury in adult critically ill patients. Nephron Extra. 2011;1(1):9–23.

    PubMed  PubMed Central  Google Scholar 

  113. Constantin JM, Futier E, Perbet S, Roszyk L, Lautrette A, Gillart T, et al. Plasma neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in adult critically ill patients: a prospective study. J Crit Care. 2010;25(1):176.e1–6.

    CAS  Google Scholar 

  114. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Dobrzycki S. Neutrophil-gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am J Nephrol. 2006;26(3):287–92.

    CAS  PubMed  Google Scholar 

  115. Bachorzewska-Gajewska H, Malyszko J, Sitniewska E, Malyszko JS, Pawlak K, Mysliwiec M, et al. Could neutrophil-gelatinase-associated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press Res. 2007;30(6):408–15.

    CAS  PubMed  Google Scholar 

  116. Tong J, Li H, Zhang H, Luo Z, Huang Y, Huang J, et al. Neutrophil gelatinase-associated lipocalin in the prediction of contrast-induced nephropathy: a systemic review and meta-analysis. J Cardiovasc Pharmacol. 2015;66(3):239–45.

    CAS  PubMed  Google Scholar 

  117. Parikh CR, Mishra J, Thiessen-Philbrook H, Dursun B, Ma Q, Kelly C, et al. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006;70(1):199–203.

    CAS  PubMed  Google Scholar 

  118. Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL. Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol. 2005;16(10):3046–52.

    CAS  PubMed  Google Scholar 

  119. Liangos O, Kolyada A, Tighiouart H, Perianayagam MC, Wald R, Jaber BL. Interleukin-8 and acute kidney injury following cardiopulmonary bypass: a prospective cohort study. Nephron Clin Pract. 2009;113(3):c148–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Endre ZH, Pickering JW, Walker RJ, Devarajan P, Edelstein CL, Bonventre JV, et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int. 2011;79(10):1119–30.

    CAS  PubMed  Google Scholar 

  121. Nickolas TL, Schmidt-Ott KM, Canetta P, Forster C, Singer E, Sise M, et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J Am Coll Cardiol. 2012;59(3):246–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hall IE, Coca SG, Perazella MA, Eko UU, Luciano RL, Peter PR, et al. Risk of poor outcomes with novel and traditional biomarkers at clinical AKI diagnosis. Clin J Am Soc Nephrol. 2011;6(12):2740–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Vasudevan A, Schussler JM, Won JI, Ashcraft P, Bolanos I, Williams M, et al. Urinary metabolites in patients undergoing coronary catheterization via the radial versus femoral artery approach. Proc (Baylor Univ Med Cent). 2017;30(4):404–9.

    Google Scholar 

  124. Velibey Y, Oz A, Tanik O, Guvenc TS, Kalenderoglu K, Gumusdag A, et al. Platelet-to-lymphocyte ratio predicts contrast-induced acute kidney injury in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Angiology. 2017;68(5):419–27.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladan Golestaneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golestaneh, L., Basalely, A.M. (2020). Biomarkers of Acute Kidney Injury and Scope of Utilization in the Cardiac Catheterization Laboratory. In: Rangaswami, J., Lerma, E., McCullough, P. (eds) Kidney Disease in the Cardiac Catheterization Laboratory . Springer, Cham. https://doi.org/10.1007/978-3-030-45414-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45414-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45413-5

  • Online ISBN: 978-3-030-45414-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics