Skip to main content

Pathophysiology of Contrast Induced Acute Kidney Injury

  • Chapter
  • First Online:
  • 351 Accesses

Abstract

This chapter focuses on the pathophysiology of iodinated intravascular contrast-induced acute kidney injury (CI-AKI). While there is no conclusive evidence of the exact mechanisms involved in CI-AKI, the current understanding of its pathophysiology is summarized in this chapter. First, we provide an overview of the basic anatomy and function of the kidney relevant to the pathophysiology of CI-AKI. We then discuss the key contributory factors in the pathophysiology of CI-AKI including medullary hypoxia, reactive oxygen species, and direct tubular toxicity of contrast. Finally, the unique characteristics of contrast and contributing patient characteristics that are associated with increased risk of nephrotoxicity will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koeppen B, Stanton B. Renal physiology. Philadelphia: Elsevier Mosby; 2013.

    Google Scholar 

  2. Bakris G, Burnett J. A role for calcium and radiocontrast-induced reductions in renal hemodynamics. J Urol. 1984;134(1):212.

    Google Scholar 

  3. McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabahn RC, Mehta A. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2016;68(13):1465–73. S0735-1097(16)34717-9

    PubMed  Google Scholar 

  4. Liao JK. Isoprenoids as mediators of the biological effects of statins. J Clin Invest. 2002;2002:285–8.

    Google Scholar 

  5. Sidaway JE, et al. Inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase reduce receptor-mediated endocytosis in opossum kidney cells. J Am Soc Nephrol. 2004;15:2258–65.

    CAS  PubMed  Google Scholar 

  6. Michael A, Faga T, Pisani A, et al. Molecular mechanisms of renal cellular nephrotoxicity due to radiocontrast media. Biomed Res Int. 2014;2014:249810. https://doi.org/10.1155/2014/249810.

  7. Zager RA, et al. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int. 2003;64:128–39.

    CAS  PubMed  Google Scholar 

  8. Sumimura T, et al. Calcium-dependent injury of human microvascular endothelial cells induced by a variety of iodinated radiographic contrast media. Investig Radiol. 2003;38:366–74.

    CAS  Google Scholar 

  9. Inagi R, et al. Preostasis in endoplasmic reticulum – new mechanisms in kidney disease. Nat Rev Nephrol. 2014;10:369–78.

    CAS  PubMed  Google Scholar 

  10. Wu C, et al. The role of endoplasmic reticulum stress-related unfolded protein response in the radiocontrast medium-induced renal tubular cell injury. Toxicol Sci. 2010;114:295–301.

    CAS  PubMed  Google Scholar 

  11. Fähling M, Seeliger E, Patzak A, Persson P. Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol. 2017;13(3):169–80.

    PubMed  Google Scholar 

  12. Heyman S, Rosen S, Rosenberger C. Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy. Clin J Am Soc Nephrol. 2008;3(1):288–96.

    PubMed  Google Scholar 

  13. Tumlin J, Stacul F, Adam A, Becker C, Davidson C, Lameire N, McCullough P. Pathophysiology of contrast-induced nephropathy. Am J Cardiol. 2006;98(6):14–20.

    Google Scholar 

  14. Burke M, Pabbidi M, Farley J, Roman R. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol. 2014;12(6):845–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liss P, Carlsson P, Nygren A, Palm F, Hansell P. ET-A receptor antagonist BQ123 prevents radiocontrast media-induced renal medullary hypoxia. Acta Radiol. 2003;44(1):111–7.

    CAS  PubMed  Google Scholar 

  16. Wang A, Holcslaw T, Bashore T, Freed M, Miller D, Rudnick M, et al. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int. 2000;57(4):1675–80.

    CAS  PubMed  Google Scholar 

  17. Yao L, Zhao C, Gu X, Kolluru G, Kevil C, Zhang W. The gene expression of adenosine receptors in the processes of contrast induced nephropathy in mouse kidney. World J Cardiovasc Dis. 2013;03(09):561–8.

    Google Scholar 

  18. Ulas T, Buyukhatipoglu H, Dal MS, Kirhan I, Kaya Z, Demir ME, Aksoy N. Urotensin-II and endothelin-I levels after contrast media administration in patients undergoing percutaneous coronary interventions. J Res Med Sci. 2013;18(3):205–9.

    PubMed  PubMed Central  Google Scholar 

  19. Heyman S, Rosenberger C, Rosen S, Khamaisi M. Why is diabetes mellitus a risk factor for contrast-induced nephropathy? Biomed Res Int. 2013;2013:1–8.

    Google Scholar 

  20. Pisani A, Riccio E, Andreucci M, Faga T, Ashour M, Di Nuzzi A, et al. Role of reactive oxygen species in pathogenesis of radiocontrast-induced nephropathy. Biomed Res Int. 2013;2013:1–6.

    Google Scholar 

  21. Sedeek M, Nasrallah R, Touyz R, Hebert R. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol. 2013;24(10):1512–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics. 2014;6:748–73.

    CAS  PubMed  Google Scholar 

  23. Salvucci T, Roman C, Cha S, Maranhao V. Atrial natriuretic peptide response to ionic and nonionic contrast left ventriculography. Clin Cardiol. 1990;13(9):644–8.

    CAS  PubMed  Google Scholar 

  24. Osada M, Takeda S, Ogawa R, Iida T, Umetani K, Sawanobori T, et al. Changes in plasma atrial natriuretic peptide after angiocardiography. Exp Clin Cardiol. 2001;6(4):211–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Heyman S, Rosen S, Khamaisi M, Idée J, Rosenberger C. Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Investig Radiol. 2010;45(4):188–95.

    Google Scholar 

  26. Franke R-P, Scharnweber T, Fuhrmann R, Wenzel F, Krüger A, Mrowietz C, et al. Effect of radiographic contrast media on the Spectrin/Band3-network of the membrane skeleton of erythrocytes. PLoS One. 2014;9(2):e89512. https://doi.org/10.1371/journal.pone.0089512.

  27. Kerl J, Nguyen S, Lazarchick J, Powell J, Oswald M, Alvi F, et al. Iodinated contrast media: effect of osmolarity and injection temperature on erythrocyte morphology in vitro. Acta Radiol. 2008;49(3):337–43.

    CAS  PubMed  Google Scholar 

  28. Andreucci M, Faga T, Michael A. Cytotoxic effects of contrast media on renal tubular cells. Pathogenesis of contrast-induced acute kidney injury and prevention. J Biochem Mol Biol Res. 2015;1(1):1–13.

    Google Scholar 

  29. Schnermann J, Ploth D, Hermle M. Activation of tubulo-glomerular feedback by chloride transport. Pflugers Arch Eur J Physiol. 1976;362(3):229–40.

    CAS  Google Scholar 

  30. Stanley R, Pfister R. Bradycardia and hypotension following use of intravenous contrast media. Radiology. 1976;121(1):5–7.

    CAS  PubMed  Google Scholar 

  31. Marenzi G, et al. Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol. 2004;44:1780–5.

    PubMed  Google Scholar 

  32. Mehran R, Aymong E, Nikolsky E. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention. ACC Curr J Rev. 2005;14(3):41.

    Google Scholar 

  33. Mizuno A, Ohde S, Nishizaki Y, Komatsu Y, Niwa K. Additional value of the red blood cell distribution width to the Mehran risk score for predicting contrast-induced acute kidney injury in patients with ST-elevation acute myocardial infarction. J Cardiol. 2015;66(1):41–5.

    PubMed  Google Scholar 

  34. Azzalini L, Spagnoli V, Ly H. Contrast-induced nephropathy: from pathophysiology to preventive strategies. Can J Cardiol. 2016;32(2):247–55.

    PubMed  Google Scholar 

  35. Mamoulakis C, et al. Contrast-induced nephropathy: basic concepts, pathophysiological implications and prevention strategies. Pharmacol Ther. 2017;180:99–112.

    CAS  PubMed  Google Scholar 

  36. Chalisey A, Karim M. Hypertension and hydronephrosis: rapid resolution of high blood pressure following relief of bilateral ureteric obstruction. J Gen Intern Med. 2012;28(3):478–81.

    PubMed  PubMed Central  Google Scholar 

  37. Fahling M, et al. Understanding and preventing contrast-induced acute kidney injury. Nat Rev Nephrol. 2017;13(3):169–80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beje Thomas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madariaga, H.M., Stalam, T., Patel, A.M., Thomas, B. (2020). Pathophysiology of Contrast Induced Acute Kidney Injury. In: Rangaswami, J., Lerma, E., McCullough, P. (eds) Kidney Disease in the Cardiac Catheterization Laboratory . Springer, Cham. https://doi.org/10.1007/978-3-030-45414-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45414-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45413-5

  • Online ISBN: 978-3-030-45414-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics