Skip to main content

Generic Authenticated Key Exchange in the Quantum Random Oracle Model

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12111)

Abstract

We propose \(\mathsf {FO_\mathsf {AKE}}\), a generic construction of two-message authenticated key exchange (AKE) from any passively secure public key encryption (PKE) in the quantum random oracle model (QROM). Whereas previous AKE constructions relied on a Diffie-Hellman key exchange or required the underlying PKE scheme to be perfectly correct, our transformation allows arbitrary PKE schemes with non-perfect correctness. Dealing with imperfect schemes is one of the major difficulties in a setting involving active attacks. Our direct construction, when applied to schemes such as the submissions to the recent NIST post-quantum competition, is more natural than previous AKE transformations. Furthermore, we avoid the use of (quantum-secure) digital signature schemes which are considerably less efficient than their PKE counterparts. As a consequence, we can instantiate our AKE transformation with any of the submissions to the recent NIST competition, e.g., ones based on codes and lattices.

\(\mathsf {FO_\mathsf {AKE}}\) can be seen as a generalisation of the well known Fujisaki-Okamoto transformation (for building actively secure PKE from passively secure PKE) to the AKE setting. As a helper result, we also provide a security proof for the Fujisaki-Okamoto transformation in the QROM for PKE with non-perfect correctness which is tighter and tolerates a larger correctness error than previous proofs.

Keywords

  • Authenticated key exchange
  • Quantum random oracle model
  • NIST
  • Fujisaki-Okamoto

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45388-6_14
  • Chapter length: 34 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-45388-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Notes

  1. 1.

    Clearly, PKE requires a working public-key infrastructure (PKI) which in turn requires signatures to certify the public-key. However, a user only has to verify a given certificate once and for all, which means the overhead of a quantum-secure signature can be neglected.

  2. 2.

    There exist generic transformations that can immunise against decryption errors (e.g., [22]). Even though they are quite efficient in theory, the induced overhead is still not acceptable for practical purposes. While lattice schemes could be rendered perfectly correct by putting a limit on the noise, and setting the modulus of the LWE instance large enough (see, e.g., [12, 29]), the security level cannot be maintained without increasing the problem’s dimension, accordingly. Since this modification would lead to increased public-key and ciphertext length, many NIST submissions deliberately made the design choice of having imperfect correctness.

  3. 3.

    Not just quadratic, but indeed quartic.

  4. 4.

    Note that nomenclature of [33] is a bit misleading: while the respective KEM is called \(\mathsf {U}^{\not \bot }_ m \), it is actually transformation \(\mathsf {SXY}\) (it reencrypts during decryption, which \(\mathsf {U}^{\not \bot }_ m \) does not).

  5. 5.

    The difference is that the model from [23] furthermore allows a “partial reveal” of the test session’s state. For simplicity and due to their little practical relevance, we decided not to include such partial session reveal queries in our model. We remark that, however, our protocol could be proven secure in this slightly stronger model.

  6. 6.

    By “intermediate”, we mean the deterministic scheme that is to be plugged into one of the \(\mathsf {U}\)-transforms. In most cases, it is derived by starting from a probabilistic scheme and first applying derandomisation transformation \(\mathsf {T}\).

  7. 7.

    A strict impossibility result would have to consist of a concrete scheme as well as a concrete attack, with the latter matching the given upper bound.

  8. 8.

    Fake encryptions could be sampled uniformly random. \(\mathsf {DS}\) would follow from the LWE assumption, and since LWE samples are relatively sparse, uniform sampling should be disjoint.

References

  1. Alagic, G., Jeffery, S., Ozols, M., Poremba, A.: On non-adaptive quantum chosen-ciphertext attacks and learning with errors. CoRR abs/1808.09655 (2018)

    Google Scholar 

  2. Alawatugoda, J., Boyd, C., Stebila, D.: Continuous after-the-fact leakage-resilient key exchange. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 258–273. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5_17

    CrossRef  Google Scholar 

  3. Ambainis, A., Hamburg, M., Unruh, D.: Quantum security proofs using semi-classical oracles. Cryptology ePrint Archive, Report 2018/904 (2018). http://eprint.iacr.org/2018/904

  4. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof systems: the hardness of quantum rewinding. In: 55th Annual Symposium on Foundations of Computer Science, 18–21 October 2014, pp. 474–483. IEEE Computer Society Press, Philadelphia (2014)

    Google Scholar 

  5. Banik, S., Isobe, T.: Some cryptanalytic results on lizard. Cryptology ePrint Archive, Report 2017/346 (2017). http://eprint.iacr.org/2017/346

  6. Beals, R., Buhrman, H., Cleve, R., Mosca, M., Wolf, R.: Quantum lower bounds by polynomials. In: 39th Annual Symposium on Foundations of Computer Science, 8–11 November 1998, pp. 352–361. IEEE Computer Society Press, Palo Alto (1998)

    Google Scholar 

  7. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_30

    CrossRef  Google Scholar 

  8. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of authentication and key exchange protocols (extended abstract). In: 30th Annual ACM Symposium on Theory of Computing, 23–26 May 1998, pp. 419–428. ACM Press, Dallas (1998)

    Google Scholar 

  9. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93: 1st Conference on Computer and Communications Security, 3–5 November 1993, pp. 62–73. ACM Press, Fairfax (1993)

    Google Scholar 

  10. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_21

    CrossRef  Google Scholar 

  11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_25

    CrossRef  Google Scholar 

  12. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime. Cryptology ePrint Archive, Report 2016/461 (2016). http://eprint.iacr.org/2016/461

  13. Bindel, N., Hamburg, M., Hövelmanns, K., Hülsing, A., Persichetti, E.: Tighter proofs of CCA security in the quantum random oracle model. Cryptology ePrint Archive, Report 2019/590 (2019). https://eprint.iacr.org/2019/590

  14. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    CrossRef  MATH  Google Scholar 

  15. Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_21

    CrossRef  MATH  Google Scholar 

  16. Bos, J., et al.: CRYSTALS - Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint Archive, Report 2017/634 (2017). http://eprint.iacr.org/2017/634

  17. Boyd, C., Cliff, Y., Gonzalez Nieto, J., Paterson, K.G.: Efficient one-round key exchange in the standard model. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 69–83. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70500-0_6

    CrossRef  Google Scholar 

  18. Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_30

    CrossRef  Google Scholar 

  19. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_28

    CrossRef  Google Scholar 

  20. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    CrossRef  MathSciNet  Google Scholar 

  21. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 133–151. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40974-8_12

    CrossRef  Google Scholar 

  22. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_21

    CrossRef  Google Scholar 

  23. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_28

    CrossRef  MATH  Google Scholar 

  24. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum authenticated key exchange from one-way secure key encapsulation mechanism. In: Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.G. (eds.) ASIACCS 13: 8th ACM Symposium on Information, Computer and Communications Security, 8–10 May 2013, pp. 83–94. ACM Press, Hangzhou (2013)

    Google Scholar 

  25. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34

    CrossRef  Google Scholar 

  26. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. J. Cryptol. 26(1), 80–101 (2013)

    CrossRef  MathSciNet  Google Scholar 

  27. Gagliardoni, T., Hülsing, A., Schaffner, C.: Semantic security and indistinguishability in the quantum world. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 60–89. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_3

    CrossRef  MATH  Google Scholar 

  28. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    CrossRef  MATH  Google Scholar 

  29. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets for NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_10

    CrossRef  Google Scholar 

  30. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_15

    CrossRef  Google Scholar 

  31. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_17

    CrossRef  MATH  Google Scholar 

  32. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 96–125. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_4

    CrossRef  Google Scholar 

  33. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: IND-CCA-secure key encapsulation mechanism in the quantum random oracle model, revisited. Cryptology ePrint Archive, Report 2017/1096, July 2018. https://eprint.iacr.org/2017/1096/

  34. Jiang, H., Zhang, Z., Ma, Z.: On the non-tightness of measurement-based reductions for key encapsulation mechanism in the quantum random oracle model. Cryptology ePrint Archive, Report 2019/494 (2019). https://eprint.iacr.org/2019/494

  35. Jiang, H., Zhang, Z., Ma, Z.: Tighter security proofs for generic key encapsulation mechanism in the quantum random oracle model. Cryptology ePrint Archive, Report 2019/134 (2019). https://eprint.iacr.org/2019/134

  36. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 552–586. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_18

    CrossRef  MATH  Google Scholar 

  37. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_33

    CrossRef  Google Scholar 

  38. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-5_1

    CrossRef  MATH  Google Scholar 

  39. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: defining trivial attacks for security protocols is not trivial. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications Security, 31 October–2 November 2017, pp. 1343–1360. ACM Press, Dallas (2017)

    Google Scholar 

  40. Naehrig, M., et al.: FrodoKEM. Technical report, National Institute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

  41. NIST: National institute for standards and technology. Postquantum crypto project (2017). http://csrc.nist.gov/groups/ST/post-quantum-crypto/

  42. Persichetti, E.: Improving the efficiency of code-based cryptography. Ph.D. thesis (2012). http://persichetti.webs.com/Thesis%20Final.pdf

  43. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mechanism in the quantum random oracle model. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 520–551. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_17

    CrossRef  MATH  Google Scholar 

  44. Schäge, S.: TOPAS: 2-pass key exchange with full perfect forward secrecy and optimal communication complexity. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015: 22nd Conference on Computer and Communications Security, 12–16 October 2015, pp. 1224–1235. ACM Press, Denver (2015)

    Google Scholar 

  45. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/2004/332

  46. Toorani, M.: On continuous after-the-fact leakage-resilient key exchange. In: Proceedings of the Second Workshop on Cryptography and Security in Computing Systems. CS2 2015, pp. 31:31–31:34. ACM, New York (2015). http://doi.acm.org/10.1145/2694805.2694811

  47. Yao, A.C.C., Zhao, Y.: OAKE: a new family of implicitly authenticated Diffie-Hellman protocols. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013: 20th Conference on Computer and Communications Security, 4–8 November 2013, pp. 1113–1128. ACM Press, Berlin (2013)

    Google Scholar 

  48. Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers of Eurocrypt 2018, Crypto 2019 and Asiacrypt 2019 for their helpful comments and suggestions. This work was supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC 2092 CASA, 390781972), ERC Project ERCC (FP7/615074), the German Federal Ministry of Education and Research (BMBF) Project DigiSeal (16KIS0695), the United States Air Force Office of Scientific Research (AFOSR) via AOARD Grant “Verification of Quantum Cryptography” (FA2386-17-1-4022), the project “Research and preparation of an ERC grant application on Certified Quantum Security” (MOBERC12), the ERC Consolidator grant “Certified Quantum Security” (819317), the Estonian Centre of Excellence in IT (EXCITE) funded by the ERDF, and by the institutional research funding IUT2-1 of the Estonian Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Hövelmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 International Association for Cryptologic Research

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D. (2020). Generic Authenticated Key Exchange in the Quantum Random Oracle Model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds) Public-Key Cryptography – PKC 2020. PKC 2020. Lecture Notes in Computer Science(), vol 12111. Springer, Cham. https://doi.org/10.1007/978-3-030-45388-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45388-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45387-9

  • Online ISBN: 978-3-030-45388-6

  • eBook Packages: Computer ScienceComputer Science (R0)