Going Beyond Dual Execution: MPC for Functions with Efficient Verification
- 311 Downloads
Abstract
The dual execution paradigm of Mohassel and Franklin (PKC’06) and Huang, Katz and Evans (IEEE ’12) shows how to achieve the notion of 1-bit leakage security at roughly twice the cost of semi-honest security for the special case of two-party secure computation. To date, there are no multi-party computation (MPC) protocols that offer such a strong trade-off between security and semi-honest performance.
Our main result is to address this shortcoming by designing 1-bit leakage protocols for the multi-party setting, albeit for a special class of functions. We say that function f(x, y) is efficiently verifiable by g if the running time of g is always smaller than f and \(g(x,y,z)=1\) if and only if \(f(x,y)=z\).
In the two-party setting, we first improve dual execution by observing that the “second execution” can be an evaluation of g instead of f, and that by definition, the evaluation of g is asymptotically more efficient.
Our main MPC result is to construct a 1-bit leakage protocol for such functions from any passive protocol for f that is secure up to additive errors and any active protocol for g. An important result by Genkin et al. (STOC ’14) shows how the classic protocols by Goldreich et al. (STOC ’87) and Ben-Or et al. (STOC ’88) naturally support this property, which allows to instantiate our compiler with two-party and multi-party protocols.
A key technical result we prove is that the passive protocol for distributed garbling due to Beaver et al. (STOC ’90) is in fact secure up to additive errors against malicious adversaries, thereby, yielding another powerful instantiation of our paradigm in the constant-round multi-party setting.
As another concrete example of instantiating our approach, we present a novel protocol for computing perfect matching that is secure in the 1-bit leakage model and whose communication complexity is less than the honest-but-curious implementations of textbook algorithms for perfect matching.
Keywords
Secure computation Semi-honest security Dual execution Greedy algorithmsNotes
Acknowledgements
We thank the anonymous PKC 2020 reviewers for their valuable feedback. The first author is supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office, and by ISF grant 1316/18. The second author is supported by NSF Awards 1664445 and 1646671. The third author is supported by Google Faculty Research Grant and NSF Award CNS-1618884. The views expressed are those of the authors and do not reflect the official policy or position of Google, the Department of Defense, the National Science Foundation, or the U.S. Government.
References
- [ADI+17]Applebaum, B., Damgård, I., Ishai, Y., Nielsen, M., Zichron, L.: Secure arithmetic computation with constant computational overhead. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 223–254. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_8CrossRefGoogle Scholar
- [Bea91]Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34CrossRefGoogle Scholar
- [BGW88]Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)Google Scholar
- [BMR90]Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended abstract). In: STOC, pp. 503–513 (1990)Google Scholar
- [BNP08]Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: CCS, pp. 257–266 (2008)Google Scholar
- [cal]
- [CDF+08]Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_27CrossRefGoogle Scholar
- [CGH+18]Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2CrossRefGoogle Scholar
- [CGMA85]Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: FOCS, pp. 383–395 (1985)Google Scholar
- [FLOP18]Frederiksen, T.K., Lindell, Y., Osheter, V., Pinkas, B.: Fast distributed RSA key generation for semi-honest and malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 331–361. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_12CrossRefGoogle Scholar
- [Fre77]Freivalds, F.: Probabilistic machines can use less running time. In: IFIP Congress, pp. 839–842 (1977)Google Scholar
- [GIKR01]Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: STOC, pp. 580–589 (2001)Google Scholar
- [GIP+14]Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient to additive attacks with applications to secure computation. In: STOC, pp. 495–504 (2014)Google Scholar
- [GIP15]Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_35CrossRefGoogle Scholar
- [GIW16]Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty computation. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 336–366. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_14CrossRefGoogle Scholar
- [GMW87]Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229 (1987)Google Scholar
- [Gol04]Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
- [Har06]Harvey, N.J.A.: Algebraic structures and algorithms for matching and matroid problems. In: FOCS, pp. 531–542 (2006)Google Scholar
- [HEKM11]Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: USENIX (2011)Google Scholar
- [HIV17]Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Actively secure garbled circuits with constant communication overhead in the plain model. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 3–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_1CrossRefGoogle Scholar
- [HKE12]Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: strengthening semi-honest protocols with dual execution. In: IEEE Symposium on Security and Privacy, pp. 272–284 (2012)Google Scholar
- [HSS17]Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_21CrossRefGoogle Scholar
- [IPS08]Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32CrossRefGoogle Scholar
- [IPS09]Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_18CrossRefGoogle Scholar
- [Kin95]King, V.: A simpler minimum spanning tree verification algorithm. In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 440–448. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60220-8_83CrossRefGoogle Scholar
- [KPR18]Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6CrossRefGoogle Scholar
- [KRRW18]Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling for faster secure two-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 365–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_13CrossRefGoogle Scholar
- [KS14]Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_27CrossRefGoogle Scholar
- [KSMB13]Kreuter, B., Shelat, A., Mood, B., Butler, K.R.B.: PCF: a portable circuit format for scalable two-party secure computation. In: USENIX, pp. 321–336 (2013)Google Scholar
- [KSS12]Kreuter, B., Shelat, A., Shen, C.-H.: Billion-gate secure computation with malicious adversaries. In: USENIX, pp. 285–300 (2012)Google Scholar
- [LHS+14]Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient RAM-model secure computation. In: IEEE Symposium on Security and Privacy, pp. 623–638 (2014)Google Scholar
- [LP09]Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009). https://doi.org/10.1007/s00145-008-9036-8MathSciNetCrossRefzbMATHGoogle Scholar
- [LP12]Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptol. 25(4), 680–722 (2012). https://doi.org/10.1007/s00145-011-9107-0MathSciNetCrossRefzbMATHGoogle Scholar
- [LPSY15]Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_16CrossRefGoogle Scholar
- [MF06]Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party computation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_30CrossRefGoogle Scholar
- [MNPS04]Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: USENIX, pp. 287–302 (2004)Google Scholar
- [MOR03]MacKenzie, P.D., Oprea, A., Reiter, M.K.: Automatic generation of two-party computations. In: CCS, pp. 210–219 (2003)Google Scholar
- [MR13]Mohassel, P., Riva, B.: Garbled circuits checking garbled circuits: more efficient and secure two-party computation. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 36–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_3CrossRefGoogle Scholar
- [MS04]Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In: FOCS, pp.248–255 (2004)Google Scholar
- [MZ17]Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving machine learning. In: IEEE SP 2017 (2017)Google Scholar
- [NNOB12]Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40CrossRefGoogle Scholar
- [NO09]Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_22CrossRefGoogle Scholar
- [RHH14]Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: a programming language for generic, mixed-mode multiparty computations. In: IEEE Symposium on Security and Privacy, pp. 655–670 (2014)Google Scholar
- [RV89]Rabin, M.O., Vazirani, V.V.: Maximum matchings in general graphs through randomization. J. Algorithms 10(4), 557–567 (1989)MathSciNetCrossRefGoogle Scholar
- [WRK17a]Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously secure two-party computation. In: CCS, pp. 21–37 (2017)Google Scholar
- [WRK17b]Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: CCS, pp. 39–56 (2017)Google Scholar
- [Yao86]Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar