Skip to main content

Blazing Fast OT for Three-Round UC OT Extension

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12111)

Abstract

Oblivious Transfer (OT) is an important building block for multi-party computation (MPC). Since OT requires expensive public-key operations, efficiency-conscious MPC protocols use an OT extension (OTE) mechanism [Beaver 96, Ishai et al. 03] to provide the functionality of many independent OT instances with the same sender and receiver, using only symmetric-key operations plus few instances of some base OT protocol. Consequently there is significant interest in constructing OTE friendly protocols, namely protocols that, when used as base-OT for OTE, result in extended OT that are both round-efficient and cost-efficient. We present the most efficient OTE-friendly protocol to date. Specifically:

  • Our base protocol incurs only 3 exponentiations per instance.

  • Our base protocol results in a 3 round extended OT protocol.

  • The extended protocol is UC secure in the Observable Random Oracle Model (ROM) under the CDH assumption.

For comparison, the state of the art for base OTs that result in 3-round OTE are proven only in the programmable ROM, and require 4 exponentiations under Interactive DDH or 6 exponentiations under DDH [Masney-Rindal 19]. We also implement our protocol and benchmark it against the Simplest OT protocol [Chou and Orlandi, Latincrypt 2015], which is the most efficient and widely used OT protocol but not known to suffice for OTE. The computation cost is roughly the same in both cases. Interestingly, our base OT is also 3 rounds. However, we slightly modify the extension mechanism (which normally adds a round) so as to preserve the number of rounds in our case.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45388-6_11
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-45388-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic

  2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_26

    CrossRef  Google Scholar 

  3. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer and Communications Security, pp. 291–308. ACM Press, November 2019

    Google Scholar 

  4. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018: 25th Conference on Computer and Communications Security, pp. 896–912. ACM Press, October 2018

    Google Scholar 

  5. Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: 28th Annual ACM Symposium on Theory of Computing, pp. 479–488. ACM Press, May 1996

    Google Scholar 

  6. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016: 23rd Conference on Computer and Communications Security, pp. 578–590. ACM Press, October 2016

    Google Scholar 

  7. Byali, M., Patra, A., Ravi, D., Sarkar, P.: Fast and universally-composable oblivious transfer and commitment scheme with adaptive security. Cryptology ePrint Archive, Report 2017/1165 (2017). https://eprint.iacr.org/2017/1165

  8. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp. 136–145. IEEE Computer Society Press, October 2001

    Google Scholar 

  9. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The wonderful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_11

    CrossRef  Google Scholar 

  10. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014: 21st Conference on Computer and Communications Security, pp. 597–608. ACM Press, November 2014

    Google Scholar 

  11. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_3

    CrossRef  Google Scholar 

  12. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy, pp. 980–997. IEEE Computer Society Press, May 2018

    Google Scholar 

  13. Genç, Z.A., Iovino, V., Rial, A.: “The simplest protocol for oblivious transfer” revisited. Cryptology ePrint Archive, Report 2017/370 (2017). http://eprint.iacr.org/2017/370

  14. Guo, C., Katz, J., Wang, X., Weng, C., Yu, Y.: Better concrete security for half-gates garbling (in the multi-instance setting). Cryptology ePrint Archive, Report 2019/1168 (2019). https://eprint.iacr.org/2019/1168

  15. Garg, S., Mahmoody, M., Masny, D., Meckler, I.: On the round complexity of OT extension. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 545–574. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_19

    CrossRef  Google Scholar 

  16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM Press, May 1987

    Google Scholar 

  17. Hauck, E., Loss, J.: Efficient and universally composable protocols for oblivious transfer from the CDH assumption. Cryptology ePrint Archive, Report 2017/1011 (2017). http://eprint.iacr.org/2017/1011

  18. Hazay, C., Scholl, P., Soria-Vazquez, E.: Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 598–628. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_21

    CrossRef  Google Scholar 

  19. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    CrossRef  Google Scholar 

  20. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, Seattle, Washigton, USA, 14–17 May 1989, pp. 44–61 (1989)

    Google Scholar 

  21. Kilian, J.: Zero-knowledge with log-space verifiers. In: 29th Annual Symposium on Foundations of Computer Science, pp. 25–35. IEEE Computer Society Press, October 1988

    Google Scholar 

  22. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal overhead. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_35

    CrossRef  Google Scholar 

  23. Li, B., Micciancio, D.: Equational security proofs of oblivious transfer protocols. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 527–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_18

    CrossRef  Google Scholar 

  24. Masny, D., Rindal, P.: Endemic oblivious transfer. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019: 26th Conference on Computer and Communications Security, pp. 309–326. ACM Press, November 2019

    Google Scholar 

  25. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40

    CrossRef  Google Scholar 

  26. Orrù, M., Orsini, E., Scholl, P.: Actively secure 1-out-of-N OT extension with application to private set intersection. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 381–396. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_22

    CrossRef  Google Scholar 

  27. Patra, A., Sarkar, P., Suresh, A.: Fast actively secure OT extension for short secrets. In: 24th Annual Network and Distributed System Security Symposium, NDSS 2017, San Diego, California, USA, 26 February–1 March 2017 (2017)

    Google Scholar 

  28. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_31

    CrossRef  Google Scholar 

  29. Wang, X., Ranellucci, S., Katz, J.: Global-scale secure multiparty computation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on Computer and Communications Security, pp. 39–56. ACM Press, October/November 2017

    Google Scholar 

  30. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, October 1986

    Google Scholar 

Download references

Acknowledgements

This work was supported by the IARPA ACHILLES project, the NSF MACS project and NSF grant CNS-1422965. The first author also thanks the Check Point Institute for Information Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 International Association for Cryptologic Research

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Canetti, R., Sarkar, P., Wang, X. (2020). Blazing Fast OT for Three-Round UC OT Extension. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds) Public-Key Cryptography – PKC 2020. PKC 2020. Lecture Notes in Computer Science(), vol 12111. Springer, Cham. https://doi.org/10.1007/978-3-030-45388-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45388-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45387-9

  • Online ISBN: 978-3-030-45388-6

  • eBook Packages: Computer ScienceComputer Science (R0)