Abstract
The aim of this study is evaluating the influence of corneal geometry in the optical system’s aberrations, and its usefulness as diagnostic criterion for keratoconus.159 normal eyes (normal group, mean age 37.8 ± 11.6 years) and 292 eyes with the diagnosis of keratoconus (keratoconus group, mean age 42.2 ± 17.6 years) were included in this study. All eyes received a comprehensive ophthalmologic examination. A virtual 3D model of each eye was made using CAD software and different anatomical parameters related with surface and volume were measured. Statistically significant differences were found for all anatomical parameters (all p < 0.001). AUROC analysis showed that all parameters reached values above 0.7, with the exception of the total corneal surface area (TCSAA-S). In conclusion, the methodology explained in this research, that bases in anatomical parameters obtained from a virtual corneal model, allow to analyze the diagnostic value of corneal geometry correlation with optical aberrations in keratoconus pathology.
Keywords
- Ophthalmology
- Corneal apex
- Computer-Aided Design (CAD)
- Computational modelling
- Scheimpflug technology
This is a preview of subscription content, access via your institution.
Buying options



References
Hansen, E.D., Hartnett, M.E.: A review of treatment for retinopathy of prematurity. Expert Rev. Ophthalmol. 14(2), 73–87 (2019). https://doi.org/10.1080/17469899.2019.1596026
Cavas-Martínez, F., Piñero, D.P., Fernández-Pacheco, D.G., Mira, J., Cañavate, F.J.F., Alió, J.L.: Assessment of pattern and shape symmetry of bilateral normal corneas by scheimpflug technology. Symmetry 10(10) (2018). https://doi.org/10.3390/sym10100453
Giovanzana, S., Kasprzak, H.T., Pałucki, B., Ţǎlu, Ş.: Non-rotational aspherical models of the human optical system. J. Mod. Opt. 60(21), 1899–1905 (2013). https://doi.org/10.1080/09500340.2013.865802
Salomão, M., et al.: Recent developments in keratoconus diagnosis. Expert Rev. Ophthalmol. 13(6), 329–341 (2018). https://doi.org/10.1080/17469899.2018.1555036
Cavas-Martinez, F., De la Cruz, S.E., Nieto Martinez, J., Fernandez Canavate, F.J., Fernandez-Pacheco, D.G.: Corneal topography in keratoconus: state of the art. Eye Vis. (London, England) 3, 5 (2016). https://doi.org/10.1186/s40662-016-0036-8
Maeda, N., et al.: Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology 109(11), 1996–2003 (2002). https://doi.org/10.1016/s0161-6420(02)01279-4
Mihaltz, K., Kranitz, K., Kovacs, I., Takacs, A., Nemeth, J., Nagy, Z.Z.: Shifting of the line of sight in keratoconus measured by a hartmann-shack sensor. Ophthalmology 117(1), 41–48 (2010). https://doi.org/10.1016/j.ophtha.2009.06.039
Cavas-Martínez, F., Bataille, L., Fernández-Pacheco, D.G., Cañavate, F.J.F., Alio, J.L.: Keratoconus detection based on a new corneal volumetric analysis. Sci. Rep. 7(1) (2017). https://doi.org/10.1038/s41598-017-16145-3
Cavas-Martínez, F., Bataille, L., Fernández-Pacheco, D.G., Cañavate, F.J.F., Alio, J.L.: A new approach to keratoconus detection based on corneal morphogeometric analysis. PLoS ONE 12(9) (2017). https://doi.org/10.1371/journal.pone.0184569
Velázquez, J.S., Cavas, F., Alió Del Barrio, J., Fernández-Pacheco, D.G., Alió, J.: Assessment of the association between in vivo corneal morphogeometrical changes and keratoconus eyes with severe visual limitation. J. Ophthalmol. 2019 (2019). https://doi.org/10.1155/2019/8731626
Carvalho, L.A., et al.: Keratoconus prediction using a finite element model of the cornea with local biomechanical properties. Arquivos Brasileiros de Oftalmologia 72(2), 139–145 (2009). https://doi.org/10.1590/S0004-27492009000200002
Gefen, A., Shalom, R., Elad, D., Mandel, Y.: Biomechanical analysis of the keratoconic cornea. J. Mech. Behav. Biomed. Mater. 2(3), 224–236 (2009). https://doi.org/10.1016/j.jmbbm.2008.07.002
Lanchares, E., Buey, M.A.D., Cristóbal, J.A., Calvo, B., Ascaso, F.J., Malvè, M.: Computational simulation of scleral buckling surgery for rhegmatogenous retinal detachment: on the effect of the band size on the myopization. J. Ophthalmol. 2016 (2016). https://doi.org/10.1155/2016/3578617
Pandolfi, A., Manganiello, F.: A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5(4), 237–246 (2006). https://doi.org/10.1007/s10237-005-0014-x
Alio, J.L., Shabayek, M.H.: Corneal higher order aberrations: a method to grade keratoconus. J. Refract. Surg. (Thorofare, NJ: 1995) 22(6), 539–545 (2006)
Cavas-Martínez, F., et al.: Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia. PLoS ONE 9(10) (2014). https://doi.org/10.1371/journal.pone.0110249
Wang, L., Dai, E., Koch, D.D., Nathoo, A.: Optical aberrations of the human anterior cornea. J. Cataract Refract. Surg. 29(8), 1514–1521 (2003). https://doi.org/10.1016/S0886-3350(03)00467-X
Hernández-Camarena, J.C., et al.: Repeatability, reproducibility, and agreement between three different scheimpflug systems in measuring corneal and anterior segment biometry. J. Refract. Surg. 30(9), 616–621 (2014). https://doi.org/10.3928/1081597X-20140815-02
Montalbán, R., Piñero, D.P., Javaloy, J., Alió, J.L.: Intrasubject repeatability of corneal morphology measurements obtained with a new Scheimpflug photography-based system. J. Cataract Refract. Surg. 38(6), 971–977 (2012). https://doi.org/10.1016/j.jcrs.2011.12.029
Piñero, D.P., Alió, J.L., Alesón, A., Vergara, M.E., Miranda, M.: Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. J. Cataract Refract. Surg. 36(5), 814–825 (2010). https://doi.org/10.1016/j.jcrs.2009.11.012
Ishii, R., Kamiya, K., Igarashi, A., Shimizu, K., Utsumi, Y., Kumanomido, T.: Correlation of corneal elevation with severity of keratoconus by means of anterior and posterior topographic analysis. Cornea 31(3), 253–258 (2012). https://doi.org/10.1097/ico.0b013e31823d1ee0
Funding
This publication has been carried out in the framework of the Thematic Network for Co-Operative Research in Health (RETICS), reference number RD16/0008/0012, financed by the Carlos III Health Institute–General Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2013–2016) and the European Regional Development Fund (FEDER).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Velázquez, J.S., Cavas, F., Bolarín, J.M., Alió, J. (2020). Comparison of Corneal Morphologic Parameters and High Order Aberrations in Keratoconus and Normal Eyes. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-45385-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-45384-8
Online ISBN: 978-3-030-45385-5
eBook Packages: Computer ScienceComputer Science (R0)