Skip to main content

Comparison of Corneal Morphologic Parameters and High Order Aberrations in Keratoconus and Normal Eyes

Part of the Lecture Notes in Computer Science book series (LNBI,volume 12108)


The aim of this study is evaluating the influence of corneal geometry in the optical system’s aberrations, and its usefulness as diagnostic criterion for keratoconus.159 normal eyes (normal group, mean age 37.8 ± 11.6 years) and 292 eyes with the diagnosis of keratoconus (keratoconus group, mean age 42.2 ± 17.6 years) were included in this study. All eyes received a comprehensive ophthalmologic examination. A virtual 3D model of each eye was made using CAD software and different anatomical parameters related with surface and volume were measured. Statistically significant differences were found for all anatomical parameters (all p < 0.001). AUROC analysis showed that all parameters reached values above 0.7, with the exception of the total corneal surface area (TCSAA-S). In conclusion, the methodology explained in this research, that bases in anatomical parameters obtained from a virtual corneal model, allow to analyze the diagnostic value of corneal geometry correlation with optical aberrations in keratoconus pathology.


  • Ophthalmology
  • Corneal apex
  • Computer-Aided Design (CAD)
  • Computational modelling
  • Scheimpflug technology

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45385-5_8
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-45385-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. Hansen, E.D., Hartnett, M.E.: A review of treatment for retinopathy of prematurity. Expert Rev. Ophthalmol. 14(2), 73–87 (2019).

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cavas-Martínez, F., Piñero, D.P., Fernández-Pacheco, D.G., Mira, J., Cañavate, F.J.F., Alió, J.L.: Assessment of pattern and shape symmetry of bilateral normal corneas by scheimpflug technology. Symmetry 10(10) (2018).

  3. Giovanzana, S., Kasprzak, H.T., Pałucki, B., Ţǎlu, Ş.: Non-rotational aspherical models of the human optical system. J. Mod. Opt. 60(21), 1899–1905 (2013).

    CrossRef  Google Scholar 

  4. Salomão, M., et al.: Recent developments in keratoconus diagnosis. Expert Rev. Ophthalmol. 13(6), 329–341 (2018).

    CrossRef  CAS  Google Scholar 

  5. Cavas-Martinez, F., De la Cruz, S.E., Nieto Martinez, J., Fernandez Canavate, F.J., Fernandez-Pacheco, D.G.: Corneal topography in keratoconus: state of the art. Eye Vis. (London, England) 3, 5 (2016).

    CrossRef  CAS  Google Scholar 

  6. Maeda, N., et al.: Wavefront aberrations measured with Hartmann-Shack sensor in patients with keratoconus. Ophthalmology 109(11), 1996–2003 (2002).

    CrossRef  PubMed  Google Scholar 

  7. Mihaltz, K., Kranitz, K., Kovacs, I., Takacs, A., Nemeth, J., Nagy, Z.Z.: Shifting of the line of sight in keratoconus measured by a hartmann-shack sensor. Ophthalmology 117(1), 41–48 (2010).

    CrossRef  PubMed  Google Scholar 

  8. Cavas-Martínez, F., Bataille, L., Fernández-Pacheco, D.G., Cañavate, F.J.F., Alio, J.L.: Keratoconus detection based on a new corneal volumetric analysis. Sci. Rep. 7(1) (2017).

  9. Cavas-Martínez, F., Bataille, L., Fernández-Pacheco, D.G., Cañavate, F.J.F., Alio, J.L.: A new approach to keratoconus detection based on corneal morphogeometric analysis. PLoS ONE 12(9) (2017).

  10. Velázquez, J.S., Cavas, F., Alió Del Barrio, J., Fernández-Pacheco, D.G., Alió, J.: Assessment of the association between in vivo corneal morphogeometrical changes and keratoconus eyes with severe visual limitation. J. Ophthalmol. 2019 (2019).

  11. Carvalho, L.A., et al.: Keratoconus prediction using a finite element model of the cornea with local biomechanical properties. Arquivos Brasileiros de Oftalmologia 72(2), 139–145 (2009).

    CrossRef  PubMed  Google Scholar 

  12. Gefen, A., Shalom, R., Elad, D., Mandel, Y.: Biomechanical analysis of the keratoconic cornea. J. Mech. Behav. Biomed. Mater. 2(3), 224–236 (2009).

    CrossRef  PubMed  Google Scholar 

  13. Lanchares, E., Buey, M.A.D., Cristóbal, J.A., Calvo, B., Ascaso, F.J., Malvè, M.: Computational simulation of scleral buckling surgery for rhegmatogenous retinal detachment: on the effect of the band size on the myopization. J. Ophthalmol. 2016 (2016).

  14. Pandolfi, A., Manganiello, F.: A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol. 5(4), 237–246 (2006).

    CrossRef  CAS  PubMed  Google Scholar 

  15. Alio, J.L., Shabayek, M.H.: Corneal higher order aberrations: a method to grade keratoconus. J. Refract. Surg. (Thorofare, NJ: 1995) 22(6), 539–545 (2006)

    CrossRef  Google Scholar 

  16. Cavas-Martínez, F., et al.: Geometrical custom modeling of human cornea in vivo and its use for the diagnosis of corneal ectasia. PLoS ONE 9(10) (2014).

  17. Wang, L., Dai, E., Koch, D.D., Nathoo, A.: Optical aberrations of the human anterior cornea. J. Cataract Refract. Surg. 29(8), 1514–1521 (2003).

    CrossRef  PubMed  Google Scholar 

  18. Hernández-Camarena, J.C., et al.: Repeatability, reproducibility, and agreement between three different scheimpflug systems in measuring corneal and anterior segment biometry. J. Refract. Surg. 30(9), 616–621 (2014).

    CrossRef  PubMed  Google Scholar 

  19. Montalbán, R., Piñero, D.P., Javaloy, J., Alió, J.L.: Intrasubject repeatability of corneal morphology measurements obtained with a new Scheimpflug photography-based system. J. Cataract Refract. Surg. 38(6), 971–977 (2012).

    CrossRef  PubMed  Google Scholar 

  20. Piñero, D.P., Alió, J.L., Alesón, A., Vergara, M.E., Miranda, M.: Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. J. Cataract Refract. Surg. 36(5), 814–825 (2010).

    CrossRef  PubMed  Google Scholar 

  21. Ishii, R., Kamiya, K., Igarashi, A., Shimizu, K., Utsumi, Y., Kumanomido, T.: Correlation of corneal elevation with severity of keratoconus by means of anterior and posterior topographic analysis. Cornea 31(3), 253–258 (2012).

    CrossRef  PubMed  Google Scholar 

Download references


This publication has been carried out in the framework of the Thematic Network for Co-Operative Research in Health (RETICS), reference number RD16/0008/0012, financed by the Carlos III Health Institute–General Subdirection of Networks and Cooperative Investigation Centers (R&D&I National Plan 2013–2016) and the European Regional Development Fund (FEDER).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Francisco Cavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Velázquez, J.S., Cavas, F., Bolarín, J.M., Alió, J. (2020). Comparison of Corneal Morphologic Parameters and High Order Aberrations in Keratoconus and Normal Eyes. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)