Skip to main content

Coupled Electro-mechanical Behavior of Microtubules

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Abstract

In this contribution, the coupled electro-mechanical behavior of the microtubules has been systematically investigated utilizing a continuum-based finite element framework. A three-dimensional computational model of a microtubule has been developed for predicting the electro-elastic response of the microtubule subjected to external forces. The effects of the magnitude and direction of the applied forces on the mechanics of microtubule have been evaluated. In addition, the effects of variation of microtubule lengths on the electro-elastic response subjected to external forces have also been quantified. The results of numerical simulation suggest that the electro-elastic response of microtubule is significantly dependent on both the magnitude and direction of the applied forces. It has been found that the application of shear force results in the attainment of higher displacement and electric potential as compared to the compressive force of the same magnitude. It has been further observed that the output potential is linearly proportional to the predicted displacement and the electric potential within the microtubule. The increase in the length of microtubule significantly enhances the predicted piezoelectric potential under the application of different forces considered in the present study. It is expected that the reported findings would be useful in different avenues of biomedical engineering, such as biocompatible nano-biosensors for health monitoring, drug delivery, noninvasive diagnosis and treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, S., Wang, C., Nithiarasu, P.: Simulations on an undamped electromechanical vibration of microtubules in cytosol. Appl. Phys. Lett. 114(25), 253702 (2019)

    Article  Google Scholar 

  2. Kučera, O., Havelka, D., Cifra, M.: Vibrations of microtubules: physics that has not met biology yet. Wave Motion 72, 13–22 (2017)

    Article  Google Scholar 

  3. Melnik, R.V.N., Wei, X., Moreno-Hagelsieb, G.: Nonlinear dynamics of cell cycles with stochastic mathematical models. J. Biol. Syst. 17(3), 425–460 (2009)

    Article  CAS  Google Scholar 

  4. Havelka, D., Deriu, M.A., Cifra, M., Kučera, O.: Deformation pattern in vibrating microtubule: structural mechanics study based on an atomistic approach. Sci. Rep. 7(1), 4227 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, S., Wang, C., Nithiarasu, P.: Three-dimensional transverse vibration of microtubules. J. Appl. Phys. 121(23), 234301 (2017)

    Article  Google Scholar 

  6. Tuszyński, J.A., Luchko, T., Portet, S., Dixon, J.M.: Anisotropic elastic properties of microtubules. Eur. Phys. J. E 17(1), 29–35 (2005)

    Article  PubMed  Google Scholar 

  7. Jiang, H., Jiang, L., Posner, J.D., Vogt, B.D.: Atomistic-based continuum constitutive relation for microtubules: elastic modulus prediction. Comput. Mech. 42(4), 607–618 (2008)

    Article  Google Scholar 

  8. Liew, K.M., Xiang, P., Sun, Y.: A continuum mechanics framework and a constitutive model for predicting the orthotropic elastic properties of microtubules. Compos. Struct. 93(7), 1809–1818 (2011)

    Article  Google Scholar 

  9. Xiang, P., Liew, K.M.: Dynamic behaviors of long and curved microtubules based on an atomistic-continuum model. Comput. Methods Appl. Mech. Eng. 223, 123–132 (2012)

    Article  Google Scholar 

  10. Liew, K.M., Xiang, P., Zhang, L.W.: Mechanical properties and characteristics of microtubules: a review. Compos. Struct. 123, 98–108 (2015)

    Article  Google Scholar 

  11. Marracino, P., et al.: Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci. Rep. 9(1), 1–14 (2019)

    Article  CAS  Google Scholar 

  12. Civalek, Ö., Demir, C.: A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl. Math. Comput. 289, 335–352 (2016)

    Google Scholar 

  13. Tuszynski, J.A., Kurzynski, M.: Introduction to Molecular Biophysics. CRC Press LLC, Boca Raton (2003)

    Book  Google Scholar 

  14. Chae, I., Jeong, C.K., Ounaies, Z., Kim, S.H.: Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio Mater. 1(4), 936–953 (2018)

    Article  CAS  Google Scholar 

  15. Thackston, K.A., Deheyn, D.D., Sievenpiper, D.F.: Simulation of electric fields generated from microtubule vibrations. Phys. Rev. E 100(2), 022410 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. Katti, D.R., Katti, K.S.: Cancer cell mechanics with altered cytoskeletal behavior and substrate effects: a 3D finite element modeling study. J. Mech. Behav. Biomed. Mater. 76, 125–134 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Singh, S., Krishnaswamy, J.A., Melnik, R.: Biological cells and coupled electro-mechanical effects: a new model with nonlocal contributions (submitted)

    Google Scholar 

  18. Denning, D., et al.: Piezoelectric tensor of collagen fibrils determined at the nanoscale. ACS Biomate. Sci. Eng. 3(6), 929–935 (2017)

    Article  CAS  Google Scholar 

  19. Hao, H., Jenkins, K., Huang, X., Xu, Y., Huang, J., Yang, R.: Piezoelectric potential in single-crystalline ZnO nanohelices based on finite element analysis. Nanomaterials 7(12), 430 (2017)

    Article  PubMed Central  Google Scholar 

  20. Cardoso, J., Oliveira, F., Proenca, M., Ventura, J.: The influence of shape on the output potential of ZnO nanostructures: sensitivity to parallel versus perpendicular forces. Nanomaterials 8(5), 354 (2018)

    Article  PubMed Central  Google Scholar 

  21. Krishnaswamy, J.A., Buroni, F.C., Garcia-Sanchez, F., Melnik, R., Rodriguez-Tembleque, L., Saez, A.: Lead-free piezocomposites with CNT-modified matrices: accounting for agglomerations and molecular defects. Compos. Struct. 224, 111033 (2019)

    Article  Google Scholar 

  22. Krishnaswamy, J.A., Buroni, F.C., Garcia-Sanchez, F., Melnik, R., Rodriguez-Tembleque, L., Saez, A.: Improving the performance of lead-free piezoelectric composites by using polycrystalline inclusions and tuning the dielectric matrix environment. Smart Mater. Struct. 28, 075032 (2019)

    Article  CAS  Google Scholar 

  23. COMSOL Multiphysics® v. 5.2. www.comsol.com. COMSOL AB, Stockholm, Sweden

  24. Adnan, A., Qidwai, S., Bagchi, A.: On the atomistic-based continuum viscoelastic constitutive relations for axonal microtubules. J. Mech. Behav. Biomed. Mater. 86, 375–389 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Xiang, P., Zhang, L.W., Liew, K.M.: Meshfree simulation of temperature effects on the mechanical behaviors of microtubules. Eng. Anal. Boundary Elem. 69, 104–118 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the NSERC and the CRC Program for their support. RM is also acknowledging the support of the BERC 2018-2021 program and Spanish Ministry of Science, Innovation and Universities through the Agencia Estatal de Investigacion (AEI) BCAM Severo Ochoa excellence accreditation SEV-2017-0718. Authors are also grateful to Prof. Jack Tuszynski as well as to Dr. Jagdish Krishnaswamy for useful discussions, valuable suggestions, and a number of important references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderick Melnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, S., Melnik, R. (2020). Coupled Electro-mechanical Behavior of Microtubules. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics