Skip to main content

Clustering Reveals Common Check-Point and Growth Factor Receptor Genes Expressed in Six Different Cancer Types

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Abstract

Cancer diagnosis and prognosis has been significantly impacted by understandings of gene expression data analysis. Several groups have utilized supervised and unsupervised machine learning tools for classification and predictions on gene expression data sets. Clustering, principal component analysis, regression are some important and promising tools for analyzing gene expression data. The complex and multi-dimensions of this data with limited samples makes it challenging to understand common patterns. Several features of high dimensional data contributing to a cluster generated by a finite mixture of underlying probability distributions can be implemented with a model-based clustering method. While some groups have shown that projective clustering and ensemble techniques can be effective to combat these challenges, we have employed clustering on 6 different cancer types to address the problem of multi-dimensionality and extracting common gene expression patterns. Our analysis has provided an expression pattern of 42 genes common throughout all cancer types with most of the genes involved in important check-point and growth factor receptor functions associated with cancer pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E., Ruzzo, W.L.: Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10), 977–987 (2001). https://doi.org/10.1093/bioinformatics/17.10.977

    Article  CAS  PubMed  Google Scholar 

  2. Domeniconi, C., Gunopulos, D., Ma, S., Yan, B., Al-Razgan, M., Papadopoulos, D.: Locally adaptive metrics for clustering high dimensional data. Data Min. Knowl. Disc. 14(1), 63–97 (2007). https://doi.org/10.1007/s10618-006-0060-8

    Article  Google Scholar 

  3. Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. ACM SIGKDD Explor. Newsl. 6(3), 90–105 (2004). https://doi.org/10.1145/1007730.1007731

    Article  Google Scholar 

  4. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data. Data Min. Knowl. Disc. 11(1), 5–33 (2005). https://doi.org/10.1007/s10618-005-1396-1

    Article  Google Scholar 

  5. Gullo, F., Domeniconi, C., Tagarelli, A.: Projective clustering ensembles. Data Min. Knowl. Disc. 26(3), 452–511 (2013). https://doi.org/10.1007/s10618-012-0266-x

    Article  Google Scholar 

  6. Gao, Y., Yin, J., Tu, Y., Chen, Y.C.: Theaflavin-3,3′-digallate suppresses human ovarian carcinoma OVCAR-3 cells by regulating the checkpoint kinase 2 and p 27 kip1 pathways. Molecules 24(4) (2019). https://doi.org/10.3390/molecules24040673

  7. Hippenmeyer, S., Shneider, N.A., Birchmeier, C., Burden, S.J., Jessell, T.M., Arber, S.: A role for neuregulin 1 signaling in muscle spindle differentiation. Neuron 36, 1035–1049 (2002)

    Article  CAS  Google Scholar 

  8. Awakura, Y., Nakamura, E., Ito, N., Kamoto, T., Ogawa, O.: Methylation-associated silencing of TU3A in human cancers. Int. J. Oncol. 33(4), 893–899 (2008)

    CAS  PubMed  Google Scholar 

  9. Jacquot, C., et al.: Effect of four genes (ALDH1, NRF1, JAM and KBL) on proliferation arrest in a non-small cell bronchopulmonary cancer line. Anticancer Res. 22(4), 2229–2235 (2002)

    CAS  PubMed  Google Scholar 

  10. Silverstein, S., Veerapandiyan, A., Hayes-Rosen, C., Ming, X., Kornitzer, J.: A novel intronic homozygous mutation in the AMT gene of a patient with nonketotic hyperglycinemia and hyperammonemia. Metab. Brain Dis. 34(1), 373–376 (2018). https://doi.org/10.1007/s11011-018-0317-0

    Article  CAS  PubMed  Google Scholar 

  11. Wu, Y.H., Chang, T.H., Huang, Y.F., Huang, H.D., Chou, C.Y.: COL11A1 promotes tumor progression and predicts poor clinical outcome in ovarian cancer. Oncogene 33(26), 3432–3440 (2014). https://doi.org/10.1038/onc.2013.307

    Article  CAS  PubMed  Google Scholar 

  12. Lorenzon-Ojea, A.R., Guzzo, C.R., Kapidzic, M., Fisher, S.J., Bevilacqua, E.: Stromal cell-derived factor 2: a novel protein that interferes in endoplasmic reticulum stress pathway in human placental cells. Biol. Reprod. 95(2), 41 (2016)

    Article  Google Scholar 

  13. Qi, S., et al.: YIPF2 is a novel Rab-GDF that enhances HCC malignant phenotypes by facilitating CD147 endocytic recycle. Cell Death Dis. 10, 462 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrajit Lahiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pawar, S., Stanam, A., Lahiri, C. (2020). Clustering Reveals Common Check-Point and Growth Factor Receptor Genes Expressed in Six Different Cancer Types. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics