Advertisement

Image Recognition to Improve Positioning in Smart Urban Environments

Conference paper
  • 156 Downloads
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 318)

Abstract

This paper describes a solution and algorithm to enhance positioning in outdoor environments with high buildings to be used in a mobile application to aid visually impaired people for navigation purposes. We used an image recognition algorithm and adjusted the android app algorithm to decrease the initial error average of 85 m (without any correction from GPS obtained signal) to a 5 m error, in the final version of our solution.

Keywords

Image recognition Outdoor positioning Outdoor navigation Urban mobility Visually impaired people 

References

  1. 1.
    Blindness and vision impairment (2018). https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 13 June 2019
  2. 2.
    Associação dos cegos e amblíopes de Portugal (2019). http://www.acapo.pt/deficiencia-visual/perguntas-e-respostas/deficiencia-visual. Accessed 13 June 2019
  3. 3.
    Antigny, N., Servires, M., Renaudin, V.: Hybrid visual and inertial position and orientation estimation based on known urban 3D models. In: 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8 (2016)Google Scholar
  4. 4.
    Antigny, N., Servires, M., Renaudin, V.: Pedestrian track estimation with hand-held monocular camera and inertial-magnetic sensor for urban augmented reality. In: 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8 (2017)Google Scholar
  5. 5.
    Xiang, X., Bian, S.: Research on BeiDou positioning performance in urban environments. In: 2013 IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC 2013), pp. 1–5 (2013)Google Scholar
  6. 6.
    Cao, G., Damerow, F., Flade, B., Helmling, M., Eggert, J.: Camera to map alignment for accurate low-cost lane-level scene interpretation (2016)Google Scholar
  7. 7.
    Faria, P., Curralo, A.F., Paiva, S.: A case study for the promotion of urban mobility for visually impaired people. In: Paiva, S. (ed.) Mobile Solutions and Their Usefulness in Everyday Life. EICC, pp. 65–82. Springer, Cham (2019).  https://doi.org/10.1007/978-3-319-93491-4_4CrossRefGoogle Scholar
  8. 8.
    Krishna Reddy, D., Achanta, D., Satya, V.: Mobile position estimation with RSS based techniques in an urban city with multiple multi-storied structures, pp. 234–234 (2014)Google Scholar
  9. 9.
    Li, T., Zhang, H., Gao, Z., Chen, Q., Niu, X.: High-accuracy positioning in urban environments using single-frequency multi-GNSS RTK/MEMS-IMU integration. Remote Sensing 2018, 205 (2018)CrossRefGoogle Scholar
  10. 10.
    Lima, A., Mendes, D., Paiva, S.: Mobile solutions for visually impaired people: case study in Viana do Castelo Historical Center. In: 2017 12th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6 (2017)Google Scholar
  11. 11.
    Lin, H., Ye, L., Wang, Y.: UWB, multi-sensors and wifi-mesh based precision positioning for urban rail traffic. In: 2010 Ubiquitous Positioning Indoor Navigation and Location Based Service, pp. 1–8 (2010)Google Scholar
  12. 12.
    Patou, Y., Obana, S., Tang, S.: Improvement of pedestrian positioning precision by using spatial correlation of multipath error. In: 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), pp. 1–8 (2018)Google Scholar
  13. 13.
    Przestrzelski, P., Bakua, M.: Study of differential code GPS/GLONASS positioning. Ann. Navig. 21, 117–132 (2014)CrossRefGoogle Scholar
  14. 14.
    Bourne, R.A., et al.: Magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. The Lancet Global Health 5, e888–e897 (2017)CrossRefGoogle Scholar
  15. 15.
    Salarian, M., Manavella, A., Ansari, R.: Accurate localization in dense urban area using google street view image, pp. 485–490 (2015)Google Scholar
  16. 16.
    Sanjuan, D.M., Adamek, T., Bonnin, A., Trzciski, T.: Enhancing global positioning by image recognition (2011)Google Scholar
  17. 17.
    Skulimowski, P., Korbel, P., Wawrzyniak, P.: POI explorer a sonified mobile application aiding the visually impaired in urban navigation, pp. 969–976 (2014)Google Scholar
  18. 18.
    Titouni, S., Rouabah, K., Attia, S., Flissi, M., Khababa, O.: GNSS multipath reduction using GPS and DGPS in the real case. Positioning 08, 47–56 (2017)CrossRefGoogle Scholar
  19. 19.
    Verbree, E., Tiberius, C., Vosselman, G.: Combined GPS-galileo positioning for location-based services in urban environment. LBS TeleCartography 66, 99–107 (2003)Google Scholar
  20. 20.
    Viandier, N., Nahimana, D.F., Marais, J., Duflos, E.: GNSS performance enhancement in urban environment based on pseudo-range error model. In: 2008IEEE/ION Position, Location and Navigation Symposium, pp. 377–382 (2008)Google Scholar
  21. 21.
    Wu, C., Yang, Z., Xu, Y., Zhao, Y., Liu, Y.: Human mobility enhances global positioning accuracy for mobile phone localization. IEEE Trans. Parallel Distrib. Syst. 26(1), 131–141 (2015)CrossRefGoogle Scholar
  22. 22.
    Wu, C., Yang, Z., Zhao, Y., Liu, Y.: Footprints elicit the truth: improving global positioning accuracy via local mobility. In: 2013 Proceedings IEEE INFOCOM, pp. 490–494 (2013)Google Scholar
  23. 23.
    Yoon, D., Kee, C., Seo, J., Park, B.: Position accuracy improvement by implementing the DGNSS-CP algorithm in smartphones. Sensors 16, 910 (2016)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  1. 1.Instituto Politécnico de Viana do CasteloViana do CasteloPortugal

Personalised recommendations