Students performance in exams. https://www.kaggle.com/spscientist/students-performance-in-exams
Barocas, S., Hardt, M., Narayanan, A.: Fairness in machine learning. In: Proceeding of NIPS (2017)
Google Scholar
Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: Cvc4. In: International Conference on Computer Aided Verification. pp. 171–177. Springer (2011)
Google Scholar
Bunel, R.R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified view of piecewise linear neural network verification. In: NeurIPS. pp. 4795–4804 (2018)
Google Scholar
De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–340. Springer (2008)
Google Scholar
Dutertre, B.: Yices 2.2. In: International Conference on Computer Aided Verification. pp. 737–744. Springer (2014).
Google Scholar
Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: NFM. Lecture Notes in Computer Science, vol. 10811, pp. 121–138. Springer (2018)
Google Scholar
Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: ATVA. Lecture Notes in Computer Science, vol. 10482, pp. 269–286. Springer (2017)
Google Scholar
Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A., Rahmati, A., Song, D.: Robust physical-world attacks on deep learning models. arXiv preprint arXiv:1707.08945 1 (2017)
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2: safety and robustness certification of neural networks with abstract interpretation. In: IEEE Symposium on Security and Privacy. pp. 3–18. IEEE (2018)
Google Scholar
Hadarean, L., Hyvarinen, A., Niemetz, A., Reger, G.: Smt-comp 2019. https://smt-comp.github.io/2019/results (2019)
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: CAV (1). Lecture Notes in Computer Science, vol. 10426, pp. 3–29. Springer (2017)
Google Scholar
Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A.G., Adam, H., Kalenichenko, D.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: CVPR. pp. 2704–2713. IEEE Computer Society (2018)
Google Scholar
Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An efficient SMT solver for verifying deep neural networks. In: CAV (1). Lecture Notes in Computer Science, vol. 10426, pp. 97–117. Springer (2017)
Google Scholar
Krizhevsky, A., Hinton, G.: Convolutional deep belief networks on cifar-10. Unpublished manuscript 40(7) (2010)
Google Scholar
Moosavi-Dezfooli, S., Fawzi, A., Frossard, P.: Deepfool: A simple and accurate method to fool deep neural networks. In: CVPR. pp. 2574–2582. IEEE Computer Society (2016)
Google Scholar
Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML. pp. 807–814. Omnipress (2010)
Google Scholar
Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties of binarized deep neural networks. In: AAAI. pp. 6615–6624. AAAI Press (2018)
Google Scholar
Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. JSAT 9, 53–58 (2014)
Google Scholar
Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neural networks. In: CAV. Lecture Notes in Computer Science, vol. 6174, pp. 243–257. Springer (2010)
Google Scholar
Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI Commun. 25(2), 117–135 (2012)
Google Scholar
Schönherr, L., Kohls, K., Zeiler, S., Holz, T., Kolossa, D.: Adversarial attacks against automatic speech recognition systems via psychoacoustic hiding. In: accepted for Publication, NDSS (2019)
Google Scholar
Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. In: POPL. ACM (2019)
Google Scholar
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)
Google Scholar
Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with mixed integer programming (2018)
Google Scholar
Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: International Conference on Learning Representations (2019)
Google Scholar
Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verification for multilayer neural networks. IEEE Trans. Neural Netw. Learning Syst. 29(11), 5777–5783 (2018)
Google Scholar
Zhao, Y., Shumailov, I., Mullins, R., Anderson, R.: To compress or not to compress: Understanding the interactions between adversarial attacks and neural network compression. In: SysML Conference (2019)
Google Scholar