Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

TACAS 2020: Tools and Algorithms for the Construction and Analysis of Systems pp 289–306Cite as

  1. Home
  2. Tools and Algorithms for the Construction and Analysis of Systems
  3. Conference paper
Solving Mean-Payoff Games via Quasi Dominions

Solving Mean-Payoff Games via Quasi Dominions

  • Massimo Benerecetti  ORCID: orcid.org/0000-0003-4664-606110,
  • Daniele Dell’Erba  ORCID: orcid.org/0000-0003-1196-611010 &
  • Fabio Mogavero  ORCID: orcid.org/0000-0002-5140-578310 
  • Conference paper
  • Open Access
  • First Online: 17 April 2020
  • 7116 Accesses

  • 1 Citations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12079)

Abstract

We propose a novel algorithm for the solution of mean-payoff games that merges together two seemingly unrelated concepts introduced in the context of parity games, small progress measures and quasi dominions. We show that the integration of the two notions can be highly beneficial and significantly speeds up convergence to the problem solution. Experiments show that the resulting algorithm performs orders of magnitude better than the asymptotically-best solution algorithm currently known, without sacrificing on the worst-case complexity.

Partially supported by GNCS 2019 & 2020 projects “Metodi Formali per Tecniche di Verifica Combinata” and “Ragionamento Strategico e Sintesi Automatica di Sistemi Multi-Agente”.

Chapter PDF

Download to read the full chapter text

References

  1. M. Agrawal, N. Kayal, and N. Saxena, “PRIMES is in P.” AM, vol. 160, no. 2, pp. 781–793, 2004.

    Google Scholar 

  2. X. Allamigeon, P. Benchimol, and S. Gaubert, “Combinatorial Simplex Algorithms Can Solve Mean-Payoff Games.” SIAM, vol. 24, no. 4, pp. 2096–2117, 2014.

    Google Scholar 

  3. X. Allamigeon, P. Benchimol, and S. Gaubert, “The Tropical Shadow-Vertex Algorithm Solves Mean-Payoff Games in Polynomial Time on Average.” in ICALP’14, 2014, pp. 89–100.

    Google Scholar 

  4. X. Allamigeon, P. Benchimol, S. Gaubert, and M. Joswig, “Tropicalizing the Simplex Algorithm.” SIAM, vol. 29, no. 2, pp. 751–795, 2015.

    Google Scholar 

  5. M. Benerecetti, D. Dell’Erba, and F. Mogavero, “Solving Parity Games via Priority Promotion.” in CAV’16, ser. LNCS 9780 (Part II). Springer, 2016, pp. 270–290.

    Google Scholar 

  6. H. Björklund, S. Sandberg, and S. Vorobyov, “A Combinatorial Strongly Subexponential Strategy Improvement Algorithm for Mean-Payoff Games.” in MFCS’04, 2004, pp. 673–685.

    Google Scholar 

  7. H. Björklund and S. Vorobyov, “A Combinatorial Strongly Subexponential Strategy Improvement Algorithm for Mean-Payoff Games.” DAM, vol. 155, no. 2, pp. 210–229, 2007.

    Google Scholar 

  8. A. Bohy, V. Bruyère, E. Filiot, and J.-F. Raskin, "Synthesis from LTL Specifications with Mean-Payoff Objectives." in TACAS’13, 2013, pp. 169–184

    Google Scholar 

  9. U. Boker, K. Chatterjee, T. Henzinger, and O. Kupferman, “Temporal Specifications with Accumulative Values.” in LICS’11, 2011, pp. 43–52.

    Google Scholar 

  10. N. Bourbaki, “Sur le Théorème de Zorn.” AM, vol. 2, no. 6, pp. 434–437, 1949.

    Google Scholar 

  11. P. Bouyer, U. Fahrenberg, K. Larsen, N. Markey, and J. Srba, “Infinite Runs in Weighted Timed Automata with Energy Constraints.” in FORMATS’2008.   Springer, 2008, pp. 33–47.

    Google Scholar 

  12. L. Brim and J. Chaloupka, “Using Strategy Improvement to Stay Alive.” IJFCS, vol. 23, no. 3, pp. 585–608, 2012.

    Google Scholar 

  13. L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin, “Faster Algorithms for Mean-Payoff Games.” FMSD, vol. 38, no. 2, pp. 97–118, 2011.

    Google Scholar 

  14. R. B. K. Chatterjee, T. Henzinger, and B. Jobstmannand, “Better Quality in Synthesis Through Quantitative Objectives.” in CAV’09, 2009, pp. 140–156.

    Google Scholar 

  15. C. Comin, R. Posenato, and R. Rizzi, “Hyper Temporal Networks - A Tractable Generalization of Simple Temporal Networks and its Relation to Mean-Payoff Games.” Constraints, vol. 22, no. 2, 2017.

    Google Scholar 

  16. C. Comin and R. Rizzi, “Dynamic Consistency of Conditional Simple Temporal Networks via Mean-Payoff Games: A Singly-Exponential Time DC-checking.” in TIME’15.   IEEECS, 2015, pp. 19–28.

    Google Scholar 

  17. C. Comin and R. Rizzi, “Improved Pseudo-Polynomial Bound for the Value Problem and Optimal Strategy Synthesis in Mean-Payoff Games.” Algorithmica, vol. 77, no. 4, 2017.

    Google Scholar 

  18. A. Condon, “The Complexity of Stochastic Games.” IC, vol. 96, no. 2, pp. 203–224, 1992.

    Google Scholar 

  19. V. Dhingra and S. Gaubert, “How to Solve Large Scale Deterministic Games with Mean Payoff by Policy Iteration.” in VALUETOOLS’06. ACM, 2006, p. 12.

    Google Scholar 

  20. A. Ehrenfeucht and J. Mycielski, “Positional Strategies for Mean Payoff Games.” IJGT, vol. 8, no. 2, 1979.

    Google Scholar 

  21. J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak, “An Ordered Approach to Solving Parity Games in Quasi Polynomial Time and Quasi Linear Space.” in SPIN’17. ACM, 2017, pp. 112–121.

    Google Scholar 

  22. M. Fellows and N. Koblitz, “Self-Witnessing Polynomial-Time Complexity and Prime Factorization.” in CSCT’92. IEEECS, 1992, pp. 107–110.

    Google Scholar 

  23. O. Friedmann and M. Lange, “Solving Parity Games in Practice.” in ATVA’09, ser. LNCS 5799. Springer, 2009, pp. 182–196.

    Google Scholar 

  24. V. Gurvich, A. Karzanov, and L. Khachivan, “Cyclic Games and an Algorithm to Find Minimax Cycle Means in Directed Graphs.” USSRCMMP, vol. 28, no. 5, pp. 85–91, 1988.

    Google Scholar 

  25. M. Jurdziński, “Deciding the Winner in Parity Games is in UP \(\cap \) co-UP.” IPL, vol. 68, no. 3, pp. 119–124, 1998.

    Google Scholar 

  26. M. Jurdziński, “Small Progress Measures for Solving Parity Games.” in STACS’00, ser. LNCS 1770. Springer, 2000, pp. 290–301.

    Google Scholar 

  27. M. Jurdziński and R. Lazic, “Succinct Progress Measures for Solving Parity Games.” in LICS’17. ACM, 2017, pp. 1–9.

    Google Scholar 

  28. N. Klarlund, “Progress Measures for Complementation of omega-Automata with Applications to Temporal Logic.” in FOCS’91. IEEECS, 1991, pp. 358–367.

    Google Scholar 

  29. Y. Lifshits and D. Pavlov, “Potential theory for mean payoff games.” JMS, vol. 145, no. 3, pp. 4967–4974, 2007.

    Google Scholar 

  30. N. Pisaruk, “Mean-Cost Cyclical Games.” MOR, vol. 24, no. 4, pp. 817–828, 1999.

    Google Scholar 

  31. S. Schewe, “An Optimal Strategy Improvement Algorithm for Solving Parity and Payoff Games.” in CSL’08, ser. LNCS 5213. Springer, 2008, pp. 369–384.

    Google Scholar 

  32. T. van Dijk, “Oink: an Implementation and Evaluation of Modern Parity Game Solvers.” in TACAS’18, ser. LNCS 10805. Springer, 2018, pp. 291–308.

    Google Scholar 

  33. E. Witt, “Beweisstudien zum Satz von M. Zorn.” MN, vol. 4, no. 1-6, pp. 434–438, 1950.

    Google Scholar 

  34. Zwick, U., Paterson, M.: The Complexity of Mean Payoff Games on Graphs. TCS 158(1–2), 343–359 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Università degli Studi di Napoli Federico II, Naples, Italy

    Massimo Benerecetti, Daniele Dell’Erba & Fabio Mogavero

Authors
  1. Massimo Benerecetti
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Daniele Dell’Erba
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Fabio Mogavero
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Fabio Mogavero .

Editor information

Editors and Affiliations

  1. Johannes Kepler University, Linz, Austria

    Prof. Armin Biere

  2. University of Birmingham, Birmingham, UK

    Prof. David Parker

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2020 The Author(s)

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benerecetti, M., Dell’Erba, D., Mogavero, F. (2020). Solving Mean-Payoff Games via Quasi Dominions. In: Biere, A., Parker, D. (eds) Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2020. Lecture Notes in Computer Science(), vol 12079. Springer, Cham. https://doi.org/10.1007/978-3-030-45237-7_18

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-030-45237-7_18

  • Published: 17 April 2020

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45236-0

  • Online ISBN: 978-3-030-45237-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The European Joint Conferences on Theory and Practice of Software.

    Published in cooperation with

    http://www.etaps.org/

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature