Skip to main content

Concurrent Kleene Algebra with Observations: From Hypotheses to Completeness

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12077)

Abstract

Concurrent Kleene Algebra (CKA) extends basic Kleene algebra with a parallel composition operator, which enables reasoning about concurrent programs. However, CKA fundamentally misses tests, which are needed to model standard programming constructs such as conditionals and \(\mathsf {while}\)-loops. It turns out that integrating tests in CKA is subtle, due to their interaction with parallelism. In this paper we provide a solution in the form of Concurrent Kleene Algebra with Observations (CKAO). Our main contribution is a completeness theorem for CKAO. Our result resorts on a more general study of CKA “with hypotheses”, of which CKAO turns out to be an instance: this analysis is of independent interest, as it can be applied to extensions of CKA other than CKAO.

References

  1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C., Walker, D.: NetKAT: Semantic foundations for networks. In: POPL. pp. 113–126. ACM (2014)

    Google Scholar 

  2. Birkhoff, G., Bartee, T.C.: Modern applied algebra. McGraw-Hill (1970)

    Google Scholar 

  3. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congruence. In: POPL. pp. 457–468 (2013)

    Google Scholar 

  4. Brunet, P., Pous, D., Struth, G.: On decidability of concurrent Kleene algebra. In: CONCUR. pp. 28:1–28:15 (2017)

    Google Scholar 

  5. Cohen, E.: Hypotheses in Kleene algebra. Tech. rep., Bellcore (1994)

    Google Scholar 

  6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, Ltd., London (1971)

    Google Scholar 

  7. Doumane, A., Kuperberg, D., Pous, D., Pradic, P.: Kleene algebra with hypotheses. In: FOSSACS. pp. 207–223 (2019)

    Google Scholar 

  8. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision procedure for NetKAT. In: POPL. pp. 343–355 (2015)

    Google Scholar 

  9. Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61, 199–224 (1988)

    Google Scholar 

  10. Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427 (1981)

    Google Scholar 

  11. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra. In: CONCUR. pp. 399–414 (2009)

    Google Scholar 

  12. Jipsen, P., Moshier, M.A.: Concurrent Kleene algebra with tests and branching automata. J. Log. Algebr. Meth. Program. 85(4), 637–652 (2016)

    Google Scholar 

  13. Kappé, T., Brunet, P., Rot, J., Silva, A., Wagemaker, J., Zanasi, F.: Kleene algebra with observations. In: CONCUR. pp. 41:1–41:16 (2019)

    Google Scholar 

  14. Kappé, T., Brunet, P., Silva, A., Wagemaker, J., Zanasi, F.: Concurrent Kleene algebra with observations: from hypotheses to completeness (2020), arXiv:2002.09682

  15. Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent Kleene algebra: Free model and completeness. In: ESOP. pp. 856–882 (2018)

    Google Scholar 

  16. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)

    Google Scholar 

  17. Kozen, D.: Kleene algebra with tests and commutativity conditions. In: TACAS. pp. 14–33 (1996)

    Google Scholar 

  18. Kozen, D.: On the complexity of reasoning in Kleene algebra. Inf. Comput. 179(2), 152–162 (2002)

    Google Scholar 

  19. Kozen, D.: On the coalgebraic theory of Kleene algebra with tests. In: Başkent, C., Moss, L.S., Ramanujam, R. (eds.) Rohit Parikh on Logic, Language and Society, Outstanding Contributions to Logic, vol. 11, pp. 279–298. Springer (2017)

    Google Scholar 

  20. Kozen, D., Mamouras, K.: Kleene algebra with equations. In: ICALP. pp. 280–292 (2014)

    Google Scholar 

  21. Krob, D.: A complete system of B-rational identities. In: ICALP. pp. 60–73 (1990)

    Google Scholar 

  22. Kuratowski, C.: Sur l’opération Ā de l’Analysis Situs. Fundamenta Mathematicae 3(1), 182–199 (1922)

    Google Scholar 

  23. Laurence, M.R., Struth, G.: Completeness theorems for bi-Kleene algebras and series-parallel rational pomset languages. In: RAMiCS. pp. 65–82 (2014)

    Google Scholar 

  24. Laurence, M.R., Struth, G.: Completeness theorems for pomset languages and concurrent Kleene algebras (2017), arXiv:1705.05896

  25. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property. Theoretical Computer Science 237(1), 347–380 (2000)

    Google Scholar 

  26. Prisacariu, C.: Synchronous Kleene algebra. The Journal of Logic and Algebraic Programming 79(7), 608 – 635 (2010)

    Google Scholar 

  27. Salomaa, A.: Two complete axiom systems for the algebra of regular events. J. ACM 13(1), 158–169 (1966)

    Google Scholar 

  28. Smolka, S., Foster, N., Hsu, J., Kappé, T., Kozen, D., Silva, A.: Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear time. In: POPL. pp. 61:1–61:28 (2020)

    Google Scholar 

  29. Wagemaker, J., Bonsangue, M., Kappé, T., Rot, J., Silva, A.: Completeness and incompleteness of synchronous Kleene algebra. In: MPC (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kappé .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2020 The Author(s)

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kappé, T., Brunet, P., Silva, A., Wagemaker, J., Zanasi, F. (2020). Concurrent Kleene Algebra with Observations: From Hypotheses to Completeness. In: Goubault-Larrecq, J., König, B. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2020. Lecture Notes in Computer Science(), vol 12077. Springer, Cham. https://doi.org/10.1007/978-3-030-45231-5_20

Download citation