Skip to main content

Segregated Algorithms for the Numerical Simulation of Cardiac Electromechanics in the Left Human Ventricle

  • Chapter
  • First Online:
The Mathematics of Mechanobiology

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2260))

Abstract

We propose and numerically assess three segregated (partitioned) algorithms for the numerical solution of the coupled electromechanics problem for the left human ventricle. We split the coupled problem into its core mathematical models and we proceed to their numerical approximation. Space and time discretizations of the core problems are carried out by means of the Finite Element Method and Backward Differentiation Formulas, respectively. In our mathematical model, electrophysiology is represented by the monodomain equation while the Holzapfel-Ogden strain energy function is used for the passive characterization of tissue mechanics. A transmurally variable active strain model is used for the active deformation of the fibers of the myocardium to couple the electrophysiology and the mechanics in the framework of the active strain model. In this work, we focus on the numerical strategy to deal with the solution of the coupled model, which is based on novel segregated algorithms that we propose. These also allow using different time discretization schemes for the core submodels, thus leading to the formulation of staggered algorithms, a feature that we systematically exploit to increase the efficiency of the overall computational procedure. By means of numerical tests we show that these staggered algorithms feature (at least) first order of accuracy. We take advantage of the efficiency of the segregated schemes to solve, in a High Performance Computing framework, the cardiac electromechanics problem for the human left ventricle, for both idealized and subject-specific configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cmcsforge.epfl.ch.

  2. 2.

    The MRI images are provided by Prof. J. Schwitter (Chief physician at the Centre Hospitalier Universitaire Vaudois CHUV, Lausanne) and Dr. P. Masci (CHUV) in the framework of the collaboration CMCS@EPFL–CHUV.

  3. 3.

    http://www.cscs.ch.

  4. 4.

    Unfortunately the maximum wall time allowed on the Piz Daint supercomputer is set to 24 h, thus making it impossible to complete a simulation of a full heartbeat in all cases—most notably for the (\({\mathcal {I}_{\mathrm {I}}\mathcal {E}_{\mathrm {I}}\mathcal {A}_{\mathrm {I}}\mathcal {M}_{\mathrm {I}}}\)) strategy, which is the most computational demanding. We hence run two sets of simulations: in the first case, we set T = 0.8 s thus obtaining the pressure-volume loops of Fig. 3.16; in the second one, we set T = 0.073 s (the maximum time reachable in 24 h with the (\({\mathcal {I}_{\mathrm {I}}\mathcal {E}_{\mathrm {I}}\mathcal {A}_{\mathrm {I}}\mathcal {M}_{\mathrm {I}}}\)) strategy) thus obtaining the results of Fig. 3.16.

References

  1. R.R. Aliev, A.V. Panfilov, A simple two-variable model of cardiac excitation. Chaos, Solitons Fractals 7(3), 293–301 (1996)

    Google Scholar 

  2. D. Ambrosi, S. Pezzuto, Active stress vs. active strain in mechanobiology: constitutive issues. J. Elast. 107(2), 199–212 (2012)

    Google Scholar 

  3. D. Ambrosi, G. Arioli, F. Nobile, A. Quarteroni, Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71(2), 605–621 (2011)

    MathSciNet  MATH  Google Scholar 

  4. C.M. Augustin, A. Neic, M. Liebmann, A.J. Prassl, S.A. Niederer, G. Haase, G. Plank, Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J. Comput. Phys. 305, 622–646 (2016)

    MathSciNet  MATH  Google Scholar 

  5. L. Barbarotta, A mathematical and numerical study of the left ventricular contraction based on the reconstruction of a patient specific geometry. Master thesis, Politecnico di Milano, Italy, 2014

    Google Scholar 

  6. L. Barbarotta, S. Rossi, L. Dedè, A. Quarteroni, A transmurally heterogeneous orthotropic activation model for ventricular contraction and its numerical validation. Int. J. Numer. Methods Biomed. Eng. 34(12), e3137 (2018)

    Google Scholar 

  7. C. Brooks, H.H. Lu, The Sinoatrial Pacemaker of the Heart (Charles C. Thomas, Springfield Publisher, Springfield, 1972)

    Google Scholar 

  8. A. Bueno-Orovio, E.M. Cherry, F.H. Fenton, Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253(3), 544–560 (2008)

    MathSciNet  MATH  Google Scholar 

  9. E. Burman, A. Ern, The discrete maximum principle for stabilized finite element methods, in Numerical Mathematics and Advanced Applications (Springer, Berlin, 2003), pp. 557–566

    MATH  Google Scholar 

  10. D.M. Cassidy, J.A. Vassallo, F.E. Marchlinski, A.E. Buxton, W.J. Untereker, M.E. Josephson, Endocardial mapping in humans in sinus rhythm with normal left ventricles: activation patterns and characteristics of electrograms. Circulation 70(1), 37–42 (1984)

    Google Scholar 

  11. F.E. Cellier, E. Kofman, Continuous System Simulation (Springer, Berlin, 2006)

    MATH  Google Scholar 

  12. D. Chapelle, M. Fernández, J.F. Gerbeau, P. Moireau, J. Sainte-Marie, N. Zemzemi, Numerical simulation of the electromechanical activity of the heart, in International Conference on Functional Imaging and Modeling of the Heart (Springer, Berlin, 2009), pp. 357–365

    Google Scholar 

  13. P. Colli Franzone, L.F. Pavarino, G. Savaré, Computational electrocardiology: mathematical and numerical modeling, in Complex Systems in Biomedicine (Springer, Berlin, 2006), pp. 187–241

    MATH  Google Scholar 

  14. P. Colli Franzone, L.F. Pavarino, S. Scacchi, Mathematical Cardiac Electrophysiology, vol. 13 (Springer, Berlin, 2014)

    MATH  Google Scholar 

  15. P. Colli Franzone, L.F. Pavarino, S. Scacchi, Parallel multilevel solvers for the cardiac electro-mechanical coupling. Appl. Numer. Math. 95, 140–153 (2015)

    MathSciNet  MATH  Google Scholar 

  16. P. Colli Franzone, L.F. Pavarino, S. Scacchi, Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: a simulation study. Math. Biosci. 280, 71–86 (2016)

    MathSciNet  MATH  Google Scholar 

  17. P. Colli Franzone, L.F. Pavarino, S. Scacchi, Bioelectrical effects of mechanical feedbacks in a strongly coupled cardiac electro-mechanical model. Math. Models Methods Appl. Sci. 26(1), 27–57 (2016)

    MathSciNet  MATH  Google Scholar 

  18. P. Colli Franzone, L.F. Pavarino, S. Scacchi, Effects of mechanical feedback on the stability of cardiac scroll waves: a bidomain electro-mechanical simulation study. Chaos Interdiscip. J. Nonlinear Sci. 27(9), 093905 (2017)

    Google Scholar 

  19. F.S. Costabal, F.A Concha, D.E. Hurtado, E. Kuhl, The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comput. Methods Appl. Mech. Eng. 320, 352–368 (2017)

    Google Scholar 

  20. H. Dal, S. Göktepe, M. Kaliske, E. Kuhl, A three-field, bi-domain based approach to the strongly coupled electromechanics of the heart. Proc. Appl. Math. Mech. 11(1), 931–934 (2011)

    Google Scholar 

  21. H. Dal, S. Göktepe, M. Kaliske, E. Kuhl, A fully implicit finite element method for bidomain models of cardiac electromechanics. Comput. Methods Appl. Mech. Eng. 253, 323–336 (2013)

    MathSciNet  MATH  Google Scholar 

  22. M.J. Davis, J.A. Donovitz, J.D. Hood, Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 262(4), C1083–C1088 (1992)

    Google Scholar 

  23. S. Deparis, D. Forti, P. Gervasio, A. Quarteroni, INTERNODES: an accurate interpolation-based method for coupling the Galerkin solutions of PDEs on subdomains featuring non-conforming interfaces. Comput. Fluids 141, 22–41 (2016)

    MathSciNet  MATH  Google Scholar 

  24. S. Deparis, D. Forti, G. Grandperrin, A. Quarteroni, FaCSI: a block parallel preconditioner for fluid-structure interaction in hemodynamics. J. Comput. Phys. 327, 700–718 (2016)

    MathSciNet  MATH  Google Scholar 

  25. S. Doll, K. Schweizerhof, On the development of volumetric strain energy functions. J. Appl. Mech. 67(1), 17–21 (2000)

    MATH  Google Scholar 

  26. T.S.E. Eriksson, A.J. Prassl, G. Plank, G.A. Holzapfel, Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction. Math. Mech. Solids 18(6), 592–606 (2013)

    MathSciNet  Google Scholar 

  27. D. Forti, M. Bukac, A. Quaini, S. Canic, S. Deparis, A monolithic approach to fluid–composite structure interaction. J. Sci. Comput. 72(1), 396-421 (2017)

    MathSciNet  MATH  Google Scholar 

  28. A. Gerbi, L. Dedè, A. Quarteroni, A monolithic algorithm for the simulation of cardiac electromechanics in the human left ventricle. Math. Eng. 1(1), 1–37 (2018)

    MATH  Google Scholar 

  29. P. Gervasio, F. Saleri, A. Veneziani, Algebraic fractional–step schemes with spectral methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 214(1), 347–365 (2006)

    MathSciNet  MATH  Google Scholar 

  30. G. Giantesio, A. Musesti, A continuum model of skeletal muscle tissue with loss of activation, in Multiscale Models in Mechano and Tumor Biology, ed. by A. Gerisch, R. Penta, J. Lang. Lecture Notes in Computational Science and Engineering, vol. 122 (Springer, Cham, 2017)

    Google Scholar 

  31. G. Giantesio, A. Musesti, On the modeling of internal parameters in hyperelastic biological materials (2017). arXiv preprint arXiv:1609.08651

    Google Scholar 

  32. S.K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sb. 89(3), 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  33. S. Göktepe, E. Kuhl, Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem. Comput. Mech. 45(2–3), 227–243 (2010)

    MathSciNet  MATH  Google Scholar 

  34. A.M. Gordon, A.F. Huxley, F.J. Julian, The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. 184(1), 170 (1966)

    Google Scholar 

  35. R.M. Haralick, L.G. Shapiro, Image segmentation techniques. Comput. Vis. Graphics Image Process. 29(1), 100–132 (1985)

    Google Scholar 

  36. E.A. Heidenreich, J.M. Ferrero, M. Doblaré, J.F. Rodríguez, Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology. Ann. Biomed. Eng. 38(7), 2331–2345 (2010)

    Google Scholar 

  37. M. Hirschvogel, M. Bassilious, L. Jagschies, S.M. Wildhirt, M.W. Gee, A monolithic 3D–0D coupled closed-loop model of the heart and the vascular system: experiment-based parameter estimation for patient-specific cardiac mechanics. Int. J. Numer. Methods Biomed. Eng. 33(8), e2842 (2017)

    Google Scholar 

  38. B.F. Hoffman, P.F. Cranefield, Electrophysiology of the Heart (McGraw-Hill, Blakiston Division, 1960)

    Google Scholar 

  39. G.A. Holzapfel, R.W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 367(1902), 3445–3475 (2009)

    MathSciNet  MATH  Google Scholar 

  40. M.C. Hsu, Y. Bazilevs, Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation. Finite Elem. Anal. Des. 47(6), 593–599 (2011)

    MathSciNet  Google Scholar 

  41. P.J. Hunter, M.P. Nash, G.B. Sands, Computational electromechanics of the heart. Comput. Biol. Heart 12, 347–407 (1997)

    MATH  Google Scholar 

  42. A. Kamkin, I. Kiseleva, G. Isenberg, Stretch-activated currents in ventricular myocytes: amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc. Res. 48(3), 409–420 (2000)

    Google Scholar 

  43. A.M. Katz, Physiology of the Heart (Lippincott Williams & Wilkins, Philadelphia, 2010)

    Google Scholar 

  44. S. Land, S.A. Niederer, N.P. Smith, Efficient computational methods for strongly coupled cardiac electromechanics. IEEE Trans. Biomed. Eng. 59(5), 1219–1228 (2012)

    Google Scholar 

  45. I. LeGrice, P. Hunter, A. Young, B. Smaill, The architecture of the heart: a data-based model. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1783), 1217–1232 (2001)

    MATH  Google Scholar 

  46. J.R. Levick, An Introduction to Cardiovascular Physiology (Butterworth-Heinemann, Oxford, 2013)

    Google Scholar 

  47. C. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

    Google Scholar 

  48. C. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74(6), 1071–1096 (1994)

    Google Scholar 

  49. M. Munteanu, L.F. Pavarino, Decoupled Schwarz algorithms for implicit discretizations of nonlinear monodomain and bidomain systems. Math. Models Methods Appl. Sci. 19(7), 1065–1097 (2009)

    MathSciNet  MATH  Google Scholar 

  50. D. Nickerson, N. Smith, P. Hunter, New developments in a strongly coupled cardiac electromechanical model. EP Europace 7(2), 118–127 (2005)

    Google Scholar 

  51. F. Nobile, A. Quarteroni, R. Ruiz-Baier, An active strain electromechanical model for cardiac tissue. Int. J. Numer. Methods Biomed. Eng. 28(1), 52–71 (2012).

    MathSciNet  MATH  Google Scholar 

  52. D. Noble, A modification of the hodgkin–Huxley equations applicable to purkinje fibre action and pacemaker potentials. J. Physiol. 160(2), 317–352 (1962)

    Google Scholar 

  53. D.A. Nordsletten, S.A. Niederer, M.P. Nash, P.J. Hunter, N.P. Smith, Coupling multi–physics models to cardiac mechanics. Prog. Biophys. Mol. Biol. 104(1), 77–88 (2011)

    Google Scholar 

  54. R.W. Ogden, Non-Linear Elastic Deformations (Courier Corporation, North Chelmsford, 1997)

    Google Scholar 

  55. L.H. Opie, Heart Physiology: From Cell to Circulation (Lippincott Williams & Wilkins, Philadelphia, 2004)

    Google Scholar 

  56. S. Pagani, Reduced–order models for inverse problems and uncertainty quantification in cardiac electrophysiology. Ph.D. thesis, Politecnico di Milano, Italy, 2017

    Google Scholar 

  57. S. Pezzuto, Mechanics of the heart: constitutive issues and numerical experiments. Ph.D. thesis, Politecnico di Milano, Italy, 2013

    Google Scholar 

  58. S. Pezzuto, D. Ambrosi, Active contraction of the cardiac ventricle and distortion of the microstructural architecture. Int. J. Numer. Methods Biomed. Eng. 30(12), 1578–1596 (2014)

    Google Scholar 

  59. M. Potse, B. Dubé, J. Richer, A. Vinet, R.M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12), 2425–2435 (2006)

    Google Scholar 

  60. A. Quarteroni, Numerical Models for Differential Problems. MS&A, vol. 16 (Springer, Berlin, 2017)

    Google Scholar 

  61. A. Quarteroni, L. Dede’, A. Manzoni, C. Vergara, Mathematical Modelling of the Human Cardiovascular System. Data, Numerical Approximation, Clinical Applications (Cambridge University Press, Cambridge, 2019)

    Google Scholar 

  62. A. Quarteroni, T. Lassila, S. Rossi, R. Ruiz-Baier, Integrated heart—coupling multiscale and multiphysics models for the simulation of the cardiac function. Comput. Methods Appl. Mech. Eng. 314, 345–407 (2017)

    MathSciNet  MATH  Google Scholar 

  63. A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, vol. 37 (Springer, Berlin, 2010)

    MATH  Google Scholar 

  64. T.A. Quinn, P. Kohl, Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovasc. Res. 97(4), 601–611 (2013)

    Google Scholar 

  65. T.G. Reese, R.M. Weisskoff, R.N. Smith, B.R. Rosen, R.E. Dinsmore, V.J. Wedeen, Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn. Reson. Med. 34(6), 786–791 (1995)

    Google Scholar 

  66. F. Regazzoni, L. Dedè, A. Quarteroni, Active contraction of cardiac cells: a reduced model for sarcomere dynamics with cooperative interactions. Biomech. Model. Mechanobiol. 17(6), 1663–1686 (2017)

    Google Scholar 

  67. B.M. Rocha, B. Lino, R.W. dos Santos, E.M. Toledo, L.P.S. Barra, J. Sundnes, A two dimensional model of coupled electromechanics in cardiac tissue, in World Congress on Medical Physics and Biomedical Engineering, Munich (Springer, Berlin, 2009), pp. 2081–2084

    Google Scholar 

  68. S. Rossi, Anisotropic modeling of cardiac mechanical activation. Ph.D. thesis, EPFL, Switzerland, 2014

    Google Scholar 

  69. S. Rossi, T. Lassila, R. Ruiz-Baier, A. Sequeira, A. Quarteroni, Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics. Eur. J. Mech. A Solids 48, 129–142 (2014)

    MathSciNet  MATH  Google Scholar 

  70. S. Rossi, R. Ruiz-Baier, L.F. Pavarino, A. Quarteroni, Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Numer. Methods Biomed. Eng. 28(6–7), 761–788 (2012)

    MathSciNet  Google Scholar 

  71. R. Ruiz-Baier, A. Gizzi, S. Rossi, C. Cherubini, A. Laadhari, S. Filippi, A. Quarteroni, Mathematical modelling of active contraction in isolated cardiomyocytes. Math. Med. Biol. 31(3), 259–283 (2014)

    MathSciNet  MATH  Google Scholar 

  72. Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM, 2003)

    Google Scholar 

  73. P.P. Sengupta, J. Korinek, M. Belohlavek, J. Narula, M.A. Vannan, A. Jahangir, B.K. Khandheria, Left ventricular structure and function. J. Am. Coll. Cardiol. 48(10) 1988–2001 (2006)

    Google Scholar 

  74. J.C. Simo, R.L. Taylor, Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput. Methods Appl. Mech. Eng.85(3), 273–310 (1991)

    MATH  Google Scholar 

  75. R.J. Spiteri, R.C. Dean, On the performance of an Implicit–Explicit Runge–Kutta method in models of cardiac electrical activity. IEEE Trans. Biomed. Eng. 55(5), 1488–1495 (2008)

    Google Scholar 

  76. D.D. Streeter, R.N. Vaishnav, D.J. Patel, H.M. Spotnitz, J. Ross, E.H. Sonnenblick, Stress distribution in the canine left ventricle during diastole and systole. Biophys. J. 10(4), 345–363 (1970)

    Google Scholar 

  77. S. Sugiura, T. Washio, A. Hatano, J. Okada, H. Watanabe, T. Hisada, Multi-scale simulations of cardiac electrophysiology and mechanics using the university of Tokyo heart simulator. Prog. Biophys. Mol. Biol. 110(2), 380–389 (2012)

    Google Scholar 

  78. K. Takizawa, Y. Bazilevs, T.E. Tezduyar, Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch. Comput. Methods Eng. 19(2), 171–225 (2012)

    MathSciNet  MATH  Google Scholar 

  79. K.H.W.J. Ten Tusscher, D. Noble, P.J. Noble, A.V. Panfilov, A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286(4), H1573–H1589 (2004)

    Google Scholar 

  80. N.A. Trayanova, Whole-heart modeling applications to cardiac electrophysiology and electromechanics. Circ. Res. 108(1), 113–128 (2011)

    Google Scholar 

  81. T.P. Usyk, A.D. McCulloch, Electromechanical model of cardiac resynchronization in the dilated failing heart with left bundle branch block. J. Electrocardiol. 36, 57–61 (2003)

    Google Scholar 

  82. T.P. Usyk, I.J. LeGrice, A.D. McCulloch, Computational model of three-dimensional cardiac electromechanics. Comput. Vis. Sci. 4(4), 249–257 (2002)

    MATH  Google Scholar 

  83. J.A. Vassallo, D.M. Cassidy, J.M. Miller, A.E. Buxton, F.E. Marchlinski, M.E. Josephson, Left ventricular endocardial activation during right ventricular pacing: effect of underlying heart disease. J. Am. Coll. Cardiol. 7(6), 1228–1233 (1986)

    Google Scholar 

  84. N. Westerhof, J.W. Lankhaar, B.E. Westerhof, The arterial Windkessel. Med. Biol. Eng. Comput. 47(2), 131–141 (2009)

    Google Scholar 

  85. J.P. Whiteley, An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng. 53(11), 2139–2147 (2006)

    Google Scholar 

  86. A.Y.K. Wong, P.M. Rautaharju, Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am. J. 75(5), 649–662 (1968)

    Google Scholar 

  87. J. Wong, E. Kuhl, Generating fibre orientation maps in human heart models using poisson interpolation. Comput. Methods Biomech. Biomed. Eng. 17(11), 1217–1226 (2014)

    Google Scholar 

  88. F.C.P. Yin, R.K. Strumpf, P.H. Chew, S.L. Zeger Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20(6), 577–589 (1987)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Swiss Platform for Advanced Scientific Computing (PASC, project “Integrative HPC Framework for Coupled Cardiac Simulations”). We also gratefully acknowledge the Swiss National Supercomputing Center (CSCS) for providing the CPU resources for the numerical simulations under project IDs s635/s796.

We acknowledge Prof. J. Schwitter and Dr. P. Masci (CHUV, Lausanne) for providing the MRI images used in this work and for the enlightening discussions. We also thank Prof. P. Tozzi (CHUV, Lausanne) for the invaluable insights in the functioning of the human heart.

The authors acknowledge the ERC Advanced Grant iHEART, “An Integrated Heart Model for the simulation of the cardiac function”, 2017–2022, P.I. A. Quarteroni (ERC–2016–ADG, project ID: 740132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dede’ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dede’, L., Gerbi, A., Quarteroni, A. (2020). Segregated Algorithms for the Numerical Simulation of Cardiac Electromechanics in the Left Human Ventricle. In: Ambrosi, D., Ciarletta, P. (eds) The Mathematics of Mechanobiology. Lecture Notes in Mathematics(), vol 2260. Springer, Cham. https://doi.org/10.1007/978-3-030-45197-4_3

Download citation

Publish with us

Policies and ethics