Skip to main content

Dynamic Process Models for Fine Grinding and Dispersing

  • Chapter
  • First Online:
Dynamic Flowsheet Simulation of Solids Processes

Abstract

Fine grinding and dispersing, such as grinding in stirred media mills, gains importance in several industrial processes. Solid materials processing is frequently subjected to dynamic changes, effecting the performance of milling. To accurately model milling processes, dynamic flowsheet simulation turns out as a promising approach to gain quick and reliable solutions, describing the milling process over time. The connection of different process units is even closer to the industrial setup. Therefore, the focus of the study is the introduction of a dynamic model for stirred media mills that can be implemented into flowsheet simulation. The modelling approach aims at separating grinding and transport phenomena in the mill. Starting with an investigation of a batch grinding process in a “calibration mill”, the dependency of the breakage rate on machine and material parameters is shown. The stressing conditions in this calibration mill are determined theoretically and via simulations using coupled CFD-DEM simulations. In the study, the prediction of influences such as varying grinding media, stirrer speed and solids concentration on the breakage rate worked out well. In continuous processes, the particle transport and axial grinding media distribution, effecting the dynamics, are simulated as a series of instantly mixed cells, connected by mixing streams. With the dynamic flowsheet simulator Dyssol, the dynamic response of the product to changes in the feed was compared to experimental investigations with limestone in a laboratory stirred media mill. Material parameters for the model were tested in a newly designed breakage tester.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tavares, L.M., de Carvalho, R.M.: Modeling breakage rates of coarse particles in ball mills. Miner. Eng. 22(7–8), 650–659 (2009)

    Article  CAS  Google Scholar 

  2. Capece, M., Bilgili, E., Davé, R.: Insight into first-order breakage kinetics using a particle-scale breakage rate constant. Chem. Eng. Sci. 117, 318–330 (2014)

    Article  CAS  Google Scholar 

  3. Theuerkauf, J.: Numerische und experimentelle Untersuchungen von Fluid- und Mahlkörperbewegungen in Rührwerkskugelmühlen, Zugl.: Braunschweig, Techn. Univ., Diss., 2000, 1. Aufl., Cuvillier Göttingen, 2000, ISBN 3897128039

    Google Scholar 

  4. Conway-Baker, J., Barley, R.W., Williams, R.A., et al.: Measurement of the motion of grinding media in a vertically stirred mill using positron emission particle tracking (PEPT). Miner. Eng. 15(1), 53–59 (2002)

    Article  CAS  Google Scholar 

  5. Jankovic, A.: Variables affecting the fine grinding of minerals using stirred mills. Min. Eng. 16(4), 337–345 (2003)

    Article  CAS  Google Scholar 

  6. Hennart, S.L.A., Wildeboer, W.J., van Hee, P., Meesters, G.M.H.: Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances. Chem. Eng. Sci. 64(19), 4123–4130 (2009)

    Article  CAS  Google Scholar 

  7. Beinert, S., Fragnière, G., Schilde, C., et al.: Analysis and modelling of bead contacts in wet-operating stirred media and planetary ball mills with CFD–DEM simulations. Chem. Eng. Sci. 134, 648–662 (2015)

    Article  CAS  Google Scholar 

  8. Beinert, S., Fragnière, G., Schilde, C., et al.: Multiscale simulation of fine grinding and dispersing processes: stressing probability, stressing energy and resultant breakage rate. Adv. Powder Technol. 29(3), 573–583 (2018)

    Article  Google Scholar 

  9. Kwade, A., Schwedes, J.: Wet grinding in stirred media mills. In: Handbook of Powder Technology, vol. 12, pp. 251–382. Elsevier Science B.V. (2007)

    Google Scholar 

  10. Beinert, S., Schilde, C., Kwade, A.: Simulation of stress energy and grinding media movement within a wet-operated annular-gap mill using the discrete-element method. Chem. Eng. Technol. 35(11), 1911–1921 (2012)

    Article  CAS  Google Scholar 

  11. Kürten, H., Raasch, J., Rumpf, H.: Beschleunigung eines kugelförmigen Feststoffteilchens im Strömungsfeld konstanter Geschwindigkeit. Chem. Ing. Tec. 38(9), 941–948 (1966)

    Article  Google Scholar 

  12. Beinert, S.: Mehrskalige Simulationen zur Partikelbeanspruchung bei der Zerkleinerung und Dispergierung, Zugl.: Braunschweig, Techn. Univ., Diss., 2015, 1. Aufl. IPAT-Schriftenreihe, Sierke Göttingen, ISBN 9783868447231 (2015)

    Google Scholar 

  13. Eskin, D., Zhupanska, O., Hamey, R., et al.: Microhydrodynamics of stirred media milling. Powder Technol. 156(2), 95–102 (2005)

    Article  CAS  Google Scholar 

  14. Kwade, A.: Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number. Powder Technol. 105(1–3), 382–388 (1999)

    Google Scholar 

  15. Radziszewski, P.: Shear based stirred mill power model—An adimensional analysis. Miner. Eng. 73, 16–20 (2015)

    Article  CAS  Google Scholar 

  16. Afolabi, A., Akinlabi, O., Bilgili, E.: Impact of process parameters on the breakage kinetics of poorly water-soluble drugs during wet stirred media milling: a microhydrodynamic view. Eur. J. Pharm. Sci. Official J. Eur. Fed. Pharm. Sci. 51, 75–86 (2014)

    CAS  Google Scholar 

  17. Jayasundara, C.T., Yang, R.Y., Yu, A.B., et al.: Prediction of the disc wear in a model IsaMill and its effect on the flow of grinding media. Miner. Eng. 24(14), 1586–1594 (2011)

    Article  CAS  Google Scholar 

  18. Cleary, P.W., Sinnott, M.D.: Computational prediction of performance for a full scale Isamill: Part—Wet models of charge and slurry transport. Miner. Eng. 79, 239–260 (2015)

    Article  CAS  Google Scholar 

  19. Gers, R., Climent, E., Legendre, D., et al.: Numerical modelling of grinding in a stirred media mill: Hydrodynamics and collision characteristics. Chem. Eng. Sci. 65(6), 2052–2064 (2010)

    Article  CAS  Google Scholar 

  20. Concas, A., Lai, N., Pisu, M., et al.: Modelling of comminution processes in Spex mixer/mill. Chem. Eng. Sci. 61(11), 3746–3760 (2006)

    Article  CAS  Google Scholar 

  21. Tuzcu, E.T., Rajamani, R.K.: Modeling breakage rates in mills with impact energy spectra and ultra fast load cell data. Miner. Eng. 24(3–4), 252–260 (2011)

    Article  CAS  Google Scholar 

  22. de Carvalho, R.M., Tavares, L.M.: Predicting the effect of operating and design variables on breakage rates using the mechanistic ball mill model. Miner. Eng. 43–44, 91–101 (2013)

    Article  Google Scholar 

  23. Capece, M., Bilgili, E., Davé, R.N.: Formulation of a physically motivated specific breakage rate parameter for ball milling via the discrete element method. AIChE J. 60(7), 2404–2415 (2014)

    Article  CAS  Google Scholar 

  24. Kwade, A., Schwedes, J.: Breaking charakteristics of different materials and their effect on stress intensity and stress number in stirred media mills. Powder Technol. 122, 109–121 (2002)

    Article  CAS  Google Scholar 

  25. He, M., Wang, Y., Forssberg, E.: Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technol. 161(1), 10–21 (2006)

    Article  CAS  Google Scholar 

  26. Rácz, Á.: Reduction of surface roughness and rounding of limestone particles in a stirred media mill. Chem. Eng. Technol. 37(5), 865–872 (2014)

    Article  Google Scholar 

  27. Fragnière, G., Beinert, S., Overbeck, A., et al.: Predicting effects of operating condition variations on breakage rates in stirred media mills. Chem. Eng. Res. Des. 138, 433–443 (2018)

    Article  Google Scholar 

  28. Kwade, A.: Autogenzerkleinerung von Kalkstein in Rührwerkmühlen, Zugl.: Braunschweig, Techn. Univ., Diss., 1996. Berichte aus der Verfahrenstechnik, Shaker Aachen, ISBN 3-8265-2082-3 (1997)

    Google Scholar 

  29. Kwade, A.: A stressing model for the description and optimization of grinding processes. Chem. Eng. Technol. 26(2), 199–205 (2003)

    Article  CAS  Google Scholar 

  30. Stadler, R., Polke, R., Schwedes, J., et al.: Naßmahlung in Rührwerksmühlen. Chem. Ing. Tec. 62(11), 907–915 (1990)

    Article  CAS  Google Scholar 

  31. Berthiaux, H., Heitzmann, D., Dodds, J.A.: Validation of a model of a stirred bead mill by comparing results obtained in batch and continuous mode grinding. Int. J. Miner. Process. 44–45, 653–661 (1996)

    Article  Google Scholar 

  32. Kwade, A.: Axialer Transport der Produktsuspension in Rührwerkskugelmühlen. Schüttgut 4(1), 13–18 (1998)

    Google Scholar 

  33. Stehr, N.: Zerkleinerung und Materialtransport in einer Rührwerkskugelmühle, Dissertation (1982)

    Google Scholar 

  34. Kwade, A., Schwedes, J.: Autogenzerkleinerung in Rührwerkmühlen. Chem. Ing. Tec. 68(7), 809–812 (1996)

    Article  CAS  Google Scholar 

  35. Schons, D., Kwade, A.: Determination of the axial grinding media distribution in the IsaMill using radiometric densitometry. Miner. Eng. 130, 110–116 (2019)

    Article  CAS  Google Scholar 

  36. Skorych, Vasyl, Dosta, Maksym, Hartge, Ernst-Ulrich, et al.: Novel system for dynamic flowsheet simulation of solids processes. Powder Technol 314, 665–679 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten Schilde or Arno Kwade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fragnière, G., Böttcher, AC., Thon, C., Schilde, C., Kwade, A. (2020). Dynamic Process Models for Fine Grinding and Dispersing. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_6

Download citation

Publish with us

Policies and ethics