Skip to main content

Modeling, Simulation and Optimization of Process Chains

  • Chapter
  • First Online:
Dynamic Flowsheet Simulation of Solids Processes

Abstract

Processes in the field of chemical engineering do not consist of one single step, but typically a high number of strongly interconnected unit operations linked with recycling streams. This inherent complexity further exacerbates when distributed particle properties, i.e., dispersity, must be considered, noteworthy being the case whenever particulate products are in focus. Out of all five possible dimensions of dispersity (size, shape, composition, surface and structure) particle size most often determines the efficiency of particulate products. Thus, its optimization is key to reach tailored handling and end product properties. In this work, a model-based optimization tool for particle synthesis was elaborated which is often the first step of a process chain. It is described by population balance equations relying on the method of characteristics for the numerical simulation and on the usage of gradient information to enhance the performance of the optimization. The presented scheme to optimize time-dependent process conditions in a time efficient manner is applicable for a wide range of particle syntheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awschalom, D.D., Bassett, L.C., Dzurak, A.S., Hu, E.L., Petta, J.R.: Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339(6124), 1174–1179 (2013)

    Article  CAS  Google Scholar 

  2. Lim, S.Y., Shen, W., Gao, Z.: Carbon quantum dots and their applications. Chem. Soc. Rev. 44(1), 362–381 (2015)

    Article  CAS  Google Scholar 

  3. Talapin, D.V., Rogach, A.L., Shevchenko, E.V., Kornowski, A., Haase, M., Weller, H.: Dynamic distribution of growth rates within the ensembles of colloidal II—VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 124(20), 5782–5790 (2002)

    Article  CAS  Google Scholar 

  4. Haderlein, M., Güldenpfennig, A., Segets, D., Peukert, W.: A widely applicable tool for modeling precipitation processes. Comput. Chem. Eng. 98, 197–208 (2017)

    Article  CAS  Google Scholar 

  5. Iggland, M., Mazzotti, M.: Population balance modeling with size-dependent solubility: Ostwald ripening. Crystal Growth Des. 12(3), 1489–1500 (2012)

    Article  CAS  Google Scholar 

  6. Marchisio, D.L., Fox, R.O.: Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36(1), 43–73 (2005)

    Article  CAS  Google Scholar 

  7. Ramkrishna, D.: Population balances: theory and applications to particulate systems in engineering. Elsevier (2000)

    Google Scholar 

  8. Ramkrishna, D., Singh, M.R.: Population balance modeling: current status and future prospects. Ann. Rev. Chem. Biomol. Eng. 5, 123–146 (2014)

    Article  CAS  Google Scholar 

  9. Segets, D., Hartig, M.A.J., Gradl, J., Peukert, W.: A population balance model of quantum dot formation: oriented growth and ripening of ZnO. Chem. Eng. Sci. 70, 4–13 (2012)

    Article  CAS  Google Scholar 

  10. Verkoeijen, D., Pouw, G.A., Meesters, G.M.H., Scarlett, B.: Population balances for particulate processes-a volume approach. Chem. Eng. Sci. 57(12), 2287–2303 (2002)

    Article  CAS  Google Scholar 

  11. Van Embden, J., Sader, J.E., Davidson, M., Mulvaney, P.: Evolution of colloidal nanocrystals: theory and modeling of their nucleation and growth. J. Phys. Chem. C 113(37), 16342–16355 (2009)

    Article  Google Scholar 

  12. Lifshitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19(1–2), 35–50 (1961)

    Article  Google Scholar 

  13. Madras, G., McCoy, B.J.: Continuous distribution theory for Ostwald ripening: comparison with the LSW approach. Chem. Eng. Sci. 58(13), 2903–2909 (2003)

    Article  CAS  Google Scholar 

  14. Thanh, N.T.K., Maclean, N., Mahiddine, S.: Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114(15), 7610–7630 (2014)

    Google Scholar 

  15. Wagner, C.: Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 65(7-8), 581–591 (1961)

    CAS  Google Scholar 

  16. Yec, C.C., Zeng, H.C.: Synthesis of complex nanomaterials via Ostwald ripening. J. Mater. Chem. A 2(14), 4843–4851 (2014)

    Article  CAS  Google Scholar 

  17. Borchert, C., Sundmacher, K.: Morphology evolution of crystal populations: modeling and observation analysis. Chem. Eng. Sci. 70, 87–98 (2012)

    Article  CAS  Google Scholar 

  18. Hussain, M., Kumar, J., Tsotsas, E.: A new framework for population balance modeling of spray fluidized bed agglomeration. Particuology 19, 141–154 (2015)

    Article  CAS  Google Scholar 

  19. Heinrich, S., Peglow, M., Ihlow, M., Henneberg, M., Mörl, L.: Analysis of the start-up process in continuous fluidized bed spray granulation by population balance modelling. Chem. Eng. Sci. 57(20), 4369–4390 (2002)

    Article  CAS  Google Scholar 

  20. Gröschel, M.: Optimization of particle synthesis-new mathematical concepts for a controlled production of functional nanoparticles. Dissertation, FAU University Press (2013)

    Google Scholar 

  21. Skorych, V., Dosta, M., Hartge, E.-U., and Heinrich, S.: Novel system for dynamic flowsheet simulation of solids processes. In: Powder Technology (2017)

    Google Scholar 

  22. Haderlein, M., Segets, D., Gröschel, M., Pflug, L., Leugering, G., Peukert, W.: FIMOR: an efficient simulation for ZnO quantum dot ripening applied to the optimization of nanoparticle synthesis. Chem. Eng. J. (2015)

    Google Scholar 

  23. Gunawan, R., Fusman, I., Braatz, R.D.: High resolution algorithms for multidimensional population balance equations. AIChE J. 50(11), 2738–2749 (2004)

    Article  CAS  Google Scholar 

  24. Chalons, C., Goatin, P., Villada, L.M.: High-order numerical schemes for onedimensional nonlocal conservation laws. SIAM J. Sci. Comput. 40(1), A288–A305 (2018)

    Article  Google Scholar 

  25. Friedrich, J., Kolb, O., Göttlich, S.: A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Netw. Heterog. Media NHM 13(4), 531–547 (2018)

    Article  Google Scholar 

  26. Kumar, R., Kumar, J., Warnecke, G.: Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms. Math. Models Methods Appl. Sci. 23(07), 1235–1273 (2013)

    Article  Google Scholar 

  27. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Handbook of Numerical Analysis, vol. 7, pp. 713–1018 (2000)

    Google Scholar 

  28. Qamar, S., Ashfaq, A., Warnecke, G., Angelov, I., Elsner, M.P., Seidel-Morgenstern, A.: Adaptive high-resolution schemes for multidimensional population balances in crystallization processes. Comput. Chem. Eng. 31(10), 1296–1311 (2007)

    Article  CAS  Google Scholar 

  29. Pilon, L., Viskanta, R.: Modified method of characteristics for solving population balance equations. Int. J. Numer. Methods Fluids 42(11), 1211–1236 (2003)

    Article  Google Scholar 

  30. Févotte, F., Févotte, G.: A method of characteristics for solving population balance equations (PBE) describing the adsorption of impurities during crystallization processes. Chem. Eng. Sci. 65(10), 3191–3198 (2010)

    Article  Google Scholar 

  31. Rehman, S.M., Qamar, S.: Application of the method of characteristics to population balance models considering growth and nucleation phenomena. Appl. Math. 5(13), 1853 (2014)

    Google Scholar 

  32. De Souza, L.G.M., Janiga, G., John, V., Thévenin, D.: Reconstruction of a distribution from a finite number of moments with an adaptive spline-based algorithm. Chem. Eng. Sci. 65(9), 2741–2750 (2010)

    Article  Google Scholar 

  33. Qamar, S., Warnecke, G.: Numerical solution of population balance equations for nucleation, growth and aggregation processes. Comput. Chem. Eng. 31(12), 1576–1589 (2007)

    Article  CAS  Google Scholar 

  34. Ulbrich, S.: Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Control Lett. 48(3–4), 313–328 (2003)

    Google Scholar 

  35. Ulbrich, M.: Optimization methods in Banach spaces. In: Optimization with PDE Constraints, pp. 97–156. Springer (2009)

    Google Scholar 

  36. Gugat, M., Herty, M., Klar, A., Leugering, G.: Optimal control for traffic flownetworks. J. Opt. Theory Appl. 126(3), 589–616 (2005). issn: 0022-3239. http://dx.doi.org/10.1007/s10957-005-5499-z

  37. Lang, Y.-D., Biegler, L.T.: A software environment for simultaneous dynamic optimization. Comput. Chem. Eng. 31(8), 931–942 (2007)

    Article  CAS  Google Scholar 

  38. Bück, A., Palis, S., Tsotsas, E.: Model-based control of particle properties in fluidised bed spray granulation. Powder Technol. 270, 575–583 (2015)

    Article  Google Scholar 

  39. Mantzaris, N.V., Daoutidis, P.: Cell population balance modeling and control in continuous bioreactors. J. Process Control 14(7), 775–784 (2004)

    Article  CAS  Google Scholar 

  40. Shi, D., El-Farra, N.H., Li, M., Mhaskar, P., Christofides, P.D.: Predictive control of particle size distribution in particulate processes. Chem. Eng. Sci. 61(1), 268–281 (2006)

    Article  CAS  Google Scholar 

  41. Madras, G., McCoy, B.J.: Temperature effects during Ostwald ripening. J. Chem. Phys. 119(3), 1683–1693 (2003)

    Article  CAS  Google Scholar 

  42. Gröschel, M., Keimer, A., Leugering, G., Wang, Z.: Regularity theory and adjoint based optimality conditions for a nonlinear transport equation with nonlocal velocity. SIAM J. Control Opt. 52(4), 2141–2163 (2014)

    Article  Google Scholar 

  43. Peukert, W., Segets, D., Pflug, L., Leugering, G.: Unified design strategies for particulate products. Adv. Chem. Eng. (2015)

    Google Scholar 

  44. Spinola, M., Keimer, A., Segets, D., Leugering, G., Pflug, L.: Model-based optimization of ripening processes with feedback modules. Chem. Eng. Technol. 43, 896–903 (2020)

    Google Scholar 

  45. Dosta, M., Heinrich, S., Werther, J.: Fluidized bed spray granulation: analysis of the system behaviour by means of dynamic flowsheet simulation. Powder Technol. (2010)

    Google Scholar 

  46. Keimer, A., Pflug, L., Spinola, M.: Existence, uniqueness and regularity of multidimensional nonlocal balance laws with damping. J. Math. Anal. Appl. 466(1), 18–55 (2018)

    Article  Google Scholar 

  47. Keimer, A., Pflug, L., Spinola, M.: Nonlocal scalar conservation laws on bounded domains and applications in traffic flow. SIAM J. Math. Anal. 50(6), 6271–6306 (2018)

    Article  Google Scholar 

  48. De los Reyes, J.C.: Numerical PDE-constrained optimization. Springer (2015)

    Google Scholar 

  49. Tröltzsch, F.: Optimal control of partial differential equations: theory, methods, and applications, vol. 112. Graduate Studies in Mathematics. American Mathematical Society (2010)

    Google Scholar 

  50. Pflug, L.: One-dimensional nonlocal balance laws-modeling and simulation. Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg (2018)

    Google Scholar 

  51. Goldschmidt, M.J.V., Weijers, G.G.C., Boerefijn, R., Kuipers, J.A.M.: Discrete element modelling of fluidised bed spray granulation. Powder Technol. 138(1), 39–45 (2003)

    Article  CAS  Google Scholar 

  52. Koeninger, B., Hensler, T., Romeis, S., Peukert, W., Wirth, K.-E.: Dynamics of fine grinding in a fluidized bed opposed jet mill. Powder Technol. 327, 346–357 (2018)

    Article  CAS  Google Scholar 

  53. Peglow, M., Kumar, J., Warnecke, G., Heinrich, S., Mörl, L.: A new technique to determine rate constants for growth and agglomeration with size-and time-dependent nuclei formation. Chem. Eng. Sci. 61(1), 282–292 (2006)

    Article  CAS  Google Scholar 

  54. Schmidt, M., Hoffmann, T., Bück, A., Tsotsas, E.: Experimental investigation of continuous fluidized bed spray granulation with internal classification. Proc. Eng. 102, 565–574 (2015)

    Article  CAS  Google Scholar 

  55. German, R.M.: Prediction of sintered density for bimodal powder mixtures. Metall. Trans. A 23(5), 1455–1465 (1992)

    Article  Google Scholar 

  56. Molerus, O., Hoffmann, H.: Darstellung von Windsichtertrennkurven durch ein stochastisches Modell. Chemie Ingenieur Technik 41(5-6), 340–344 (1969)

    Google Scholar 

  57. Bond, F.C.: Crushing and grinding calculations, Part I. Brit. Chem. Eng. 6(6), 378–385 (1961)

    Google Scholar 

  58. Tonomura, O., Tanaka, S., Noda, M., Kano, M., Hasebe, S., Hashimoto, I.: CFD-based optimal design of manifold in plate-fin microdevices. Chem. Eng. J. 101(1–3), 397–402 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the German Research Foundation within the priority program SPP 1679 “DYNSIM-FP” LE 595/30-2 and the travel funding provided by the “Bavaria California Technology Center”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Leugering .

Editor information

Editors and Affiliations

Symbols Used

Symbols Used

Abbreviations

ADJ

Adjoint equation

FBSG

Fluidized bed spray granulation

PBE

Population balance equation

PRI

Primal equation

PSD

Particle size distribution

RSD

Relative standard deviation

Greek Letters

\(\gamma \)

[a.u.]

Weight function in nonlocal term

\(\mu \)

[m]

Mean particle size

\(\xi \)

[a.u.]

Solution of characteristic equation

\(\pi \)

[–]

\(3.1415\dots \)

\(\sigma \)

[m]

Standard deviation

\(\Phi \)

[–]

Grade efficiency function

\(\chi \)

[–]

Characteristic function

\(\Omega \)

[–]

Domain of interest

Symbols

\(\partial \)

[–]

Partial derivative

\(\tfrac{\,\mathrm {d}}{\,\mathrm {d}z}\)

[–]

Total derivative (to z)

\(\nabla \)

[–]

Gradient

t

[s]

Time

\(t_{\text {f}}\)

[s]

Fnal time

n

[–]

Dimension of disperse properties

x

[m]

Particle radius

\(\varvec{x}\)

[a.u.]

Vector of disperse properties

\(\mathrm {G}\)

[a.u.]

One-dimensional growth function

\(\mathbf{G} \)

[a.u.]

Multi-dimensional growth function

\(\mathrm {G}_{\text {Ost}}\)

[–]

Ostwald ripening function

\(u_{\mathrm {G}}\)

[a.u.]

Time-dependent parameter in \(\mathrm {G}\)

\(u_\mathbf{G }\)

[a.u.]

Time-dependent parameter in \(\mathbf{G} \)

\(u_{\text {in}}\)

[–]

Time-dependent influx rate

\(u_{\text {out}}\)

[–]

Time-dependent extraction rate

\(u_0\)

[–]

Scaling factor of initial PSD

\(\underline{u}\)

[a.u.]

Lower bound on process condition u

\(\overline{u}\)

[a.u.]

Upper bound on process condition u

q

[a.u.]

PSD

\(q_3\)

[a.u.]

Mass-related PSD

\(q_{\text {in}}\)

[a.u.]

PSD of external nuclei

\(q_{\text {in},3}\)

[a.u.]

Mass-related PSD of external nuclei

\(q_0\)

[a.u.]

Initial PSD

\(q_{\text {d}}\)

[a.u.]

Desired PSD

\(W_q\)

[a.u.]

Nonlocal term in (1)

\(\varvec{x}_{\min }\)

[a.u.]

Vector of minimal disperse properties

\(x_{\min }\)

[m]

Minimal radius

p

[a.u.]

Solution of (3)

\(Y_p\)

[a.u.]

Nonlocal term in (3)

J

[a.u.]

Cost functional

\(U_{\text {ad}}\)

[–]

Set of admissible process conditions

\(\hat{\varvec{\xi }}\)

[m]

Semi-discr. of \(\xi \)

\(\varvec{q}\)

[a.u.]

Semi-discr. of q

\(\varvec{p}\)

[a.u.]

Semi-discr. of p

\(\hat{W}_q\)

[a.u.]

Approx. of \(W_q\)

\(\hat{q}\)

[a.u.]

Approximation of q

\(\hat{Y}_p\)

[a.u.]

Approx. of \(Y_p\)

\(\hat{p}\)

[a.u.]

Approximation of p

d(u)

[–]

Number of discretization points of u

d

[–]

Number of discretization points

K

[–]

number of grid points

\(x_k\)

[a.u.]

Grid point

\(x_L\)

[a.u.]

Largest grid point

\(\mathrm {E}^n\)

[a.u.]

n-th moment

\(\mathrm {E}\)

[a.u.]

First moment

\(\mu _{\text {d}}\)

[m]

Desired mean particle size

\(\mu _{\text {in}}\)

[m]

Mean particle size of entering PSD

\(\mu _{\text {out}}\)

[m]

Mean particle size of outgoing PSD

P

[W]

Milling power

\(q_{\text {tot}}\)

[m\(^{-1}\)]

PSD of total product

\(q_{\text {crush}}\)

[m\(^{-1}\)]

PSD of crushed particles

\(q_{\text {crush},3}\)

[m\(^{-1}\)]

Mass-related PSD of crushed particles

\(x_{\text {cut}}\)

[m]

Cut size

\(\dot{m}\)

[kg\(\cdot \mathrm{s}^{-1}\)]

Mass flow

Norms

\(\Vert \cdot \Vert _{L^p ((0,t_{\text {f}}))}\)

Norm on Lebesgue space of p-integrable functions on \((0,t_{\text {f}})\)

\(\Vert \cdot \Vert _{H^1 ((0,t_{\text {f}}))}\)

Norm on Sobolev space of functions \(f\in L^2((0,t_{\text {f}}))\) with \(\dot{f}\in L^2((0,t_{\text {f}}))\)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spinola, M., Keimer, A., Segets, D., Pflug, L., Leugering, G. (2020). Modeling, Simulation and Optimization of Process Chains. In: Heinrich, S. (eds) Dynamic Flowsheet Simulation of Solids Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-45168-4_16

Download citation

Publish with us

Policies and ethics