Skip to main content

KoFFI—The New Driving Experience: How to Cooperate with Automated Driving Vehicles

  • 550 Accesses

Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

Imagine you are at the beginning of a journey from Stuttgart to Munich. It will take you almost three hours because of heavy traffic. It is quite warm outside; you have just had lunch and feel a bit tired. This is sure to be a long, exhausting, and boring trip. The good news is that your car can drive automatically and that you have KoFFI (in German: “Kooperative Fahrer-Fahrzeug-Interaktion”) on board—the new intelligent driver assistance system for collaborative driving in both manual and automated driving modes. In this chapter, we describe how KoFFI supports you in typical traffic situations during that drive. On the one hand, there is the so-called guardian angel function, which helps you to survive critical traffic situations but also offers some convenient features during manual driving. On the other hand, you will learn how KoFFI can assist the driver at system boundaries and vice versa in various cooperative driving scenarios. In addition, we explain how to apply ethics-by-design during system development and how to take care of your personal data required for automated driving (e.g., driver monitoring video streams or data needed for personalization). KoFFI communicates with the driver via its innovative speech dialogue system, which can even distinguish between priorities and a user-centered human-machine interface. The results of and lessons learned from several user tests show that the cooperative assistant KoFFI is able to ensure a convenient, pleasant, and safe drive in either manual or automated driving mode.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45131-8_3
  • Chapter length: 57 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-45131-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9

Adapted from Walch et al. (2019c), Fig. 1

Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15

(Adapted from Martinez-Maradiaga et al. 2019)

Fig. 16

Notes

  1. 1.

    Other guidelines such as the ones by the German Federal Ministry of Traffic and Infrastructure have been taken into account (Ethik-Kommission Automatisiertes und Vernetztes Fahren 2017).

  2. 2.

    After the first survey, we used the results to rethink the design of the questionnaire. We therefore worked with two different sets of questions. The first survey was conducted at Bosch (n = 23), the second at Daimler (n = 21), and the third at Ulm University (n = 14). The narrative interviews (six individual interviews and one group interview) were conducted at the Hochschule der Medien and at the University of Ulm.

  3. 3.

    The values have at first been formulated in the “Smart Mobility Matrix” (Deliverable/Milestone 2.1). For the KoFFI Code, we reconsidered them (Deliverable/Milestone 2.3).

  4. 4.

    By “engineer” we mean all professions concerned with the development of highly automated driving: computer scientists, software developers, programmers, designers, and alike.

  5. 5.

    The film is called “StattLandFlucht” and was directed, filmed, and produced by students of the Audiovisual Media program at the Hochschule der Medien, course: “Studioproduktion Film & VFX” (studio production film and visual effects), winter term 2019/2020, supervized by Petra Grimm and Katja Schmid.

  6. 6.

    See also the list of guidelines on AI ethics that have been published in the last few years: Algorithmwatch (2019).

  7. 7.

    The 44 questions cover the six following topics: 1. About the project 2. Dealing with involved persons 3. Design 4. Programming 5. Ethical evaluation 6. Possible future consequences of the invention.

  8. 8.

    For the relationship between law and ethics see for instance: Grimm et al. (2019), Schliesky (2019).

  9. 9.

    Cf. GDPR Art. 4(11), Art. 6(1) a, Art. 7, recitals 42/43.

  10. 10.

    GDPR Art. 4(5).

  11. 11.

    E.g., IEEE’s “Ethically Aligned Design” principles or the United Nation’s Global Impact Principles.

References

  • Abbink DA, Mulder M, Boer ER (2012) Haptic shared control: smoothly shifting control authority? Cogn Technol Work 14:19–28. https://doi.org/10.1007/s10111-011-0192-5

    CrossRef  Google Scholar 

  • Algorithmwatch (2019) AI ethics guidelines global inventory. https://algorithmwatch.org/en/project/ai-ethics-guidelines-global-inventory/. Accessed 17 Jan 2020

  • Allen R, Rosenthal T, Cook M (2011) A short history of driving simulation. Handbook of driving simulation for engineering, medicine, and psychology. CRC Press. https://doi.org/10.1201/b10836-3

  • Amodei D, Anubhai R, Battenberg E et al (2020) Deep speech 2: end-to-end speech recognition in English and Mandarin. https://arxiv.org/pdf/1512.02595.pdf

  • Apple (2020) https://www.apple.com/de/siri/. Accessed 17 Jan 2020

  • Art. 29 Data Protection Working Party, Opinion (3/2012) on developments in biometric technologies WP 193, 2012

    Google Scholar 

  • Autoblog (2020) Waymo self-driving cars rack up 20 million miles on public roads. https://www.autoblog.com/2020/01/07/waymo-self-driving-20-million-miles/

  • Awad E, Dsouza S, Kim R et al (2018) The Moral machine experiment. Nature 563:59–64. https://doi.org/10.1038/s41586-018-0637-6

    CrossRef  Google Scholar 

  • Balzer T, Nugel M (2016) Das Auslesen von Fahrzeugdaten zur Unfallrekonstruktion im Zivilprozess. NJW 2016:193

    Google Scholar 

  • Beaver I, Freeman C, Mueen A (2017) An annotated corpus of relational strategies in customer service. arXiv:1708.05449

    Google Scholar 

  • Bengler K, Zimmermann M, Bortot D et al (2012) Interaction principles for cooperative human-machine systems interaction principles for cooperative human-machine systems. https://doi.org/10.1524/itit.2012.0680

    Google Scholar 

  • Berndt S (2018) Das Automobil im Visier der Strafverfolgungsbehörden. NZV 2018:249

    Google Scholar 

  • Bloomberg (2018) Who’s winning the self-driving car race? https://www.bloomberg.com/news/features/2018-05-07/who-s-winning-the-self-driving-car-race

  • BMBF (2019) Das intelligente Auto – der beste Freund des Menschen. https://www.bmbf.de/de/das-intelligente-auto-der-beste-freund-des-menschen-10278.html

  • Bohus D, Rudnickey A (2003) RavenClaw: dialog management using hierarchical task decomposition and an expectation agenda. In: Eighth European conference on speech communication and technology

    Google Scholar 

  • Boril H, Sadjadi SO, Hansen JH (2011) UTDrive: emotion and cognitive load classification for in-vehicle scenarios. In: The 5th Biennial workshop on digital signal processing for in-vehicle systems

    Google Scholar 

  • Bosch (2019) Connected parking automated valet parking, don’t get stressed, get parked. https://www.bosch.com/de/stories/automated-valet-parking/

  • Braunger P, Hofmann H, Werner S et al (2016) A comparative analysis of crowdsourced natural language corpora for spoken dialog systems. In: LREC

    Google Scholar 

  • Brockmeyer H (2018) Treuhänder für Mobilitätsdaten – Zukunftsmodell für hoch- und vollautomatisierte Fahrzeuge? ZD 2018, 258

    Google Scholar 

  • Christoffersen K, Woods DD (2002) How to make automated systems team players. Adv Hum Perform Cogn Eng Res 2:1–12. https://doi.org/10.1016/S1479-3601(02)02003-9

    CrossRef  Google Scholar 

  • Cummings JJ, Bailenson JN (2016) How immersive is enough? A meta-analysis of the effect of immersive technology on user presence. Media Psychol 19(2):272–309. https://doi.org/10.1080/15213269.2015.1015740

    CrossRef  Google Scholar 

  • Dekker SWA, Woods DD (2002) MABA-MABA or Abracadabra? Progress on human-automation co-ordination. Cogn Technol Work 4:240–244. https://doi.org/10.1007/s101110200022

    CrossRef  Google Scholar 

  • Deng L, Liu Y (eds) (2018) Deep learning in natural language processing. Springer, Singapore

    Google Scholar 

  • DVR (2012) German Road Safety Council (DVR) “Vision Zero”. In: Schriftenreihe 16. https://www.dvr.de/download2/p3042/3042_0.pdf. Accessed 16 Jan 2020

  • Eliot (2020) https://www.aitrends.com/ai-insider/car-voice-commands-nlp-self-driving-cars/. Accessed 17 Jan 2020

  • Endsley MR (2017) From here to autonomy: lessons learned from human-automation research. Hum Factors 59:5–27. https://doi.org/10.1177/0018720816681350

    CrossRef  Google Scholar 

  • Endsley MR, Kaber DB (1999) Level of automation effects on performance, situation awareness and workload in a dynamic control task

    Google Scholar 

  • EP (2019) European Parliament “Safer roads: EU lawmakers agree on life-saving technologies for new vehicles”. https://www.europarl.europa.eu/news/en/press-room/20190326IPR33205/safer-roads-eu-lawmakers-agree-on-life-saving-technologies-for-new-vehicles. Accessed 16 Jan 2020

  • European Data Protection Board, EDPB, Guidelines (1/2020) on processing personal data in the context of connected vehicles and mobility related applications

    Google Scholar 

  • Ethik-Kommission Automatisiertes und Vernetztes Fahren (2017) Bericht: Juni 2017. https://www.bmvi.de/SharedDocs/DE/Publikationen/DG/bericht-der-ethik-kommission.pdf?__blob=publicationFile. Accessed 20 Jan 2020

  • European Union (2016) Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC: (General Data Protection Regulation) 59 (119) https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:FULL&from=EN. Accessed 14 Nov 2016

  • Fernandez R, Picard RW (2003) Modeling drivers’ speech under stress. Speech Commun 40(1–2):145–159

    CrossRef  Google Scholar 

  • Fischer V, Kunzmann S (2001) Bayesian information criterion based multi-style training and likelihood combination for robust hands-free speech recognition in the car. In: Proceedings of the IEEE workshop on hands-free speech communications, Kyoto, Japan

    Google Scholar 

  • Fischer V, Ghahabi O, Kunzmann S (2018) Recent improvements to neural network based acoustic modeling in the EML realtime transcription platform. In: Proceedings of 29th conference on electronic speech signal processing. Ulm, Germany

    Google Scholar 

  • Foot P (1967) The problem of abortion and the doctrine of the double effect. Oxford Rev 5:5–15 https://philpapers.org/rec/FOOTPO-2. Accessed 10 May 2016

  • Friedman B, Hendry DG (2019) Value sensitive design: shaping technology with moral imagination. MIT Press, Cambridge, Mass

    CrossRef  Google Scholar 

  • German Association of the Automotive Industry (VDA)—Data protection aspects in the use of networked and non-networked vehicles (2016)

    Google Scholar 

  • Ghahabi O, Zhou W, Fischer V (2018) A robust voice activity detection for real-time automatic speech recognition. In: Proc. of 29th Confer-ence on Electronic Speech Signal Processing, Ulm, Germany

    Google Scholar 

  • Gleiss (2017) Lutz Automotive: Neue rechtliche Vorgaben für automatisiertes Fahren. https://www.gleisslutz.com/de/automatisiertes%20Fahren.html

  • Graves A, Jaitly N, Mahamed A (2013) Hybrid speech recognition with deep bidirectional LSTM. In: Proceedings of the 2013 IEEE international conference on acoustics, speech, and signal processing. Vancouver, Canada

    Google Scholar 

  • Grimm P, Kuhnert S (2018) Funktionalität und Vertrauen: Eine interdisziplinäre Expertenrunde zum automatisierten und autonomen Fahren an der Hochschule der Medien in Stuttgart. Available via “Wissenschaft und Forschung an der HdM”. https://www.hdm-stuttgart.de/science/view_beitrag?science_beitrag_ID=452. Accessed 17 Jan 2020

  • Grimm P, Kuhnert S (2018) Narrative Ethik in der Forschung zum automatisierten und vernetzten Fahren. Mensch – Maschine. Franz Steiner Verlag, Stuttgart, pp 93–109

    Google Scholar 

  • Grimm P, Kuhnert S (Upcoming 2020) Die Zusammenarbeit von Industrie, Ethik und Wissenschaft im Forschungsverbund: Kommunikation. Integration. Innovation. In: Gransche B, Manzeschke A (ed) Das geteilte Ganze: Horizonte Integrierter Forschung für künftige Mensch-Technik-Verhältnisse. Springer, Wiesbaden

    Google Scholar 

  • Grimm P, Keber TO, Zöllner O (eds) (2019) Digitale Ethik: Leben in vernetzten Welten. Reclam, Stuttgart

    Google Scholar 

  • Goldberg Y (2017) Neural network methods for natural language processing. Morgan & Claypool Publishers, San Rafael, CA, USA

    CrossRef  Google Scholar 

  • Hannun A, Case C, Casper J et al (2014) Deep speech: scaling up end-to-end speech recognition. https://arxiv.org/pdf/1412.5567.pdf

  • Hansen J, Angkititrakul P, Plucienkowski J et al (2002) CU-move: analysis and corpus development for interactive in-vehicle speech systems. In: Proceedings of the 2nd annual conference on spoken language processing (INTERSPEECH). Aalborg, Denmark

    Google Scholar 

  • Hart SG, Staveland LE (1988) Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv Psychol 52:139–183

    CrossRef  Google Scholar 

  • Hart SG (2006) NASA-task load index (NASA_TLX): 20 years later. In: Proceedings of the human factors and ergonomics society annual meeting, vol 50, pp 904–908. Sage Publications

    Google Scholar 

  • Hasselbalch G, Tranberg P (2016) Data ethics: the new competitive advantage. https://dataethics.eu/en/book. Accessed 20 Jan 2020

  • He T, Fan Y, Qian Y et al (2014) Reshaping deep neural net-work for fast decoding by node-pruning. In: Proceedings of the 2014 IEEE international conference on acoustics, speech, and signal processing. Florence, Italy

    Google Scholar 

  • Hensch A-C, Rauh N, Schmidt et al (2020) Effects of secondary tasks and display position on glance behavior during partially automated driving. Transp Res Part F: Traffic Psychol Behav 68 23–32. https://doi.org/10.1016/j.trf.2019.11.014

  • Hinton G, Deng L, Yu D et al (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig Process Mag 29(6):82–97

    CrossRef  Google Scholar 

  • Hoc J (2010) From human-machine interaction to human-machine cooperation, 0139. https://doi.org/10.1080/001401300409044

  • Hofmann H, Ehrlich U, Berton A et al (2012) Speech interaction with the Internet—a user study. In: 8th International conference on intelligent environments (IE). S. 323–326. IEEE

    Google Scholar 

  • Hollnagelt E, Woods DD (1983) Cognitive systems engineering: new wine in new bottles, pp 583–600

    Google Scholar 

  • Keber T, Keppeler L, Schwartmann R u.a. (Hrsg.) (2018) DS-GVO/BDSG: Datenschutz-Grundverordnung, Bundesdatenschutzgesetz, Artikel 25. Heidelberger, Kommentar

    Google Scholar 

  • Kienle M, Damböck D, Kelsch J et al (2009) Towards an h-mode for highly automated vehicles: driving with side sticks. In: Proceedings 1st international conference on automotive user interfaces interactive vehicle applications AutomotiveUI 2009, pp 19–23. https://doi.org/10.1145/1620509.1620513

  • Kim B, Ryu S, Lee GG (2017) Two-stage multi-intent detection for spoken language understanding. Multimedia Tools Appl 76(9):11377–11390

    CrossRef  Google Scholar 

  • Klein G, Woods DD, Bradshaw JM et al (2004) Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell Syst 19:91–95. https://doi.org/10.1109/MIS.2004.74

    CrossRef  Google Scholar 

  • Klink-Straub J, Keber T, Aktuelle Gesetzeslage zum automatisierten Fahren, NZV 2020 (forthcoming)

    Google Scholar 

  • Klink-Straub J, Straub T, Vernetzte Fahrzeuge – portable Daten, ZD 2018, 459

    Google Scholar 

  • Koo J, Kwac J, Ju W et al (2015) Why did my car just do that? Explaining semi-autonomous driving actions to improve driver understanding, trust, and performance. Int J Interact Des Manuf, 269–275

    Google Scholar 

  • Kraus JM, Sturn J, Reiser JE, Baumann M (2015) Anthropomorphic agents, transparent automation and driver personality: Towards an integrative multilevel model of determinants for effective driver-vehicle cooperation in highly automated vehicles. In: Adjunct proceedings of the 7th international conference on automotive user interfaces and interactive vehicular. AutomotiveUI 2015, pp 8–13. https://doi.org/10.1145/2809730.2809738

  • Krausen J-M (2019) Autorecht Schaden und Beweis. ZD-Aktuell 2019:04369

    Google Scholar 

  • Krausen J-M (2019) Unfallaufklärung 2.0, Vision Zero Datenschutz, ZD-Aktuell 2019, Dok, 06679

    Google Scholar 

  • Landesberger J, Kornmüller D, Ehrlich U (2017) Explorative Untersuchung von Multi-Intents in Sprachdialogsystemen. Multimedia Tools Appl 76(9):11377–11390

    CrossRef  Google Scholar 

  • Landesberger J, Ehrlich U (2018) Investigating strategies for resolving misunderstood utterances with multiple intents. In: Proceedings of the 22nd workshop on the semantics and pragmatics of dialogue (AixDial)

    Google Scholar 

  • Landesberger J, Ehrlich U (2019a) Towards finding appropriate responses to multi-intents—SPM: sequential prioritisation model. In: Proceedings of the 23rd workshop on the semantics and pragmatics of dialogue (LondonLogue)

    Google Scholar 

  • Landesberger J, Ehrlich U (2019b) Finding a metadialogue strategy for multi-intent spoken dialogue systems. In: Proceedings of the international conference on computer-human interaction research and applications (CHIRA)

    Google Scholar 

  • Lê H, Pham TL, Meixner G (2017) A concept for a virtual reality driving simulation in combination with a real car. In: Proceedings of the 9th international conference on automotive user interfaces and interactive vehicular applications adjunct—AutomotiveUI’17, pp 77–82. https://doi.org/10.1145/3131726.3131742

  • Lee JD, Hoffman JD, Hayes E (2004) Collision warning design to mitigate driver distraction. In: Proceedings of the SIGCHI conference on human factors in computing systems

    Google Scholar 

  • Lemon O (2012) Conversational interfaces. Data-driven methods for adaptive spoken dialogue systems. Springer, New York, NY, pp 1–4

    Google Scholar 

  • Lim BY, Dey AK, Avrahami D (2009) Why and why not explanations improve the intelligibility of context-aware intelligent systems. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 2119–2128

    Google Scholar 

  • Lucas G, Kemeny A, Paillot D, Colombet F (2020) A simulation sickness study on a driving simulator equipped with a vibration platform. Transp Res Part F: Traffic Psychol Behav 68:15–22. https://doi.org/10.1016/j.trf.2019.11.011

    CrossRef  Google Scholar 

  • Lutz L (2019) Fahrzeugdaten und staatlicher Datenzugriff, DAR 2019, 125

    Google Scholar 

  • Madsen M, Gregor S (2000) Measuring human-computer trust. In: 11th Australasian conference on information systems, vol 53, pp 6–8

    Google Scholar 

  • Matzner T (2019) Autonome Trolleys und andere Probleme. Konfigurationen Künstlicher Intelligenz in ethischen Debatten über selbstfahrende Kraftfahrzeuge. https://doi.org/10.25969/MEDIAREP/12632

  • Maurer S, Rukzio E and Erbach R (2018a) Challenges for creating driver overriding mechanisms. In: Adjunct proceedings of the 9th international ACM conference on automotive user interfaces and interactive vehicular applications. Oldenburg, Germany, pp 99–103

    Google Scholar 

  • Maurer S, Erbach R, Kraiem I, Kuhnert S, Grimm P, Rukzio E (2018b) Designing a guardian angel. In: Interaction ASIGoC-HM (ed) Proceedings of the 10th international conference on automotive user interfaces and interactive vehicular applications. ACM, pp 341–350

    Google Scholar 

  • Mayer RC, Davis JH, Schoorman FD (1995) An integrative model of organizational trust. Acad Manag Rev 20(3):709–734

    CrossRef  Google Scholar 

  • McCall R, McGee F, Meschtscherjakov A, Louveton N, Engel T (2016) Towards a taxonomy of autonomous vehicle handover situations. AutomotiveUI 2016—Proceedings of 8th international conference on automotive user interfaces and interactive vehicular applications, pp 193–200. https://doi.org/10.1145/3003715.3005456

  • McCormick I, Walkey F, Green D (1986) Comparative perceptions of driver ability: a confirmation and expansion. Accident analysis and prevention, vol 18, pp 205–208

    Google Scholar 

  • McTear MF (2004) Spoken dialogue technology: toward the conversational user interface. Springer Science & Business Media

    Google Scholar 

  • Metzger A (2019) Digitale Mobilität, Verträge über Nutzerdaten GRUR, p 129

    Google Scholar 

  • Mikolov T, Karafiat M, Burget L et al (2010) Recurrent neural network based language model. In: Proceedings of the 11th annual conference of the international speech communication. Association (INTER-SPEECH). Makuhari, Chiba, Japan

    Google Scholar 

  • Moreno A, Lindberg B, Draxler C et al (2000) SPEECHDAT-CAR. A large speech database for automotive environments. In: Proceedings of the 2nd international conference on language resources and evaluation (LREC). Athens, Greece

    Google Scholar 

  • Müller M, Grimm P (2016) Narrative Medienforschung: Einführung in Methodik und Anwendung. UVK Verlagsgesellschaft mbH, Konstanz

    Google Scholar 

  • Norman D (2013) The design of everyday things, Revised and expanded edn. Basic Books (AZ)

    Google Scholar 

  • Nothdurft F, Ultes S, Minker W (2015) Finding appropriate interaction strategies for proactive dialogue systems—an open quest. In: Proceedings of the 2nd European and the 5th Nordic symposium on multimodal communication. Tartu, Estonia (No 110). Linköping University Electronic Press, pp 73–80

    Google Scholar 

  • Nothdurft F, Richter F, Minker W (2014) Probabilistic human-computer trust handling. In: Proceedings of the 15th annual meeting of the special interest group on discourse and dialogue (SIGDIAL), pp 51–59

    Google Scholar 

  • Riek LD, Howard D (2014) A code of ethics for the human-robot interaction profession. robots.law.miami.edu/2014/wp-content/uploads/2014/03/a-code-of-ethics-for-the-human-robot-interaction-profession-riek-howard.pdf. Accessed 16 Aug 2016

    Google Scholar 

  • Rüpke G, v. Lewinski K, Eckhardt J (2018) Datenschutzrecht

    Google Scholar 

  • SAE (2014) SAE international: taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. https://saemobilus.sae.org/content/j3016_201401

  • Schliesky U (2019) Digitale Ethik und Recht. Neue Juristische Wochenschrift:3692–3697

    Google Scholar 

  • Schmid W (2017) Event Data Recording für das hoch- und vollautomatisierte Kfz – eine kritische Betrachtung der neuen Regelungen im StVG. NZV 2017:357

    Google Scholar 

  • Schwartmann R, Jacquemain T (2018) Datenschutzrechtliche Herausforderungen im Auto, RDV 2018, 247 f

    Google Scholar 

  • Schwenke T (2018) Zulässigkeit der Nutzung von Smartcams und biometrischen Daten nach der DS-GVO. NJW 2018:823

    Google Scholar 

  • Sheridan T, Verplank W (1978) Human and computer control of undersea teleoperators

    Google Scholar 

  • Sørmo F, Cassens J (2004) Explanation goals in case-based reasoning. In: Proceedings of the ECCBR 2004 workshops, No 142–04, pp 165–174

    Google Scholar 

  • Steele M, Gillespie RB (2001) Shared control between human and machine: using a haptic steering wheel to aid in land vehicle guidance. Proc Hum Factors Ergon Soc Annu Meet 45:1671–1675. https://doi.org/10.1177/154193120104502323

    CrossRef  Google Scholar 

  • Steinert P, Automatisiertes Fahren, SVR 2019, 5

    Google Scholar 

  • Tawari A, Trivedi M (2010) Speech based emotion classification framework for driver assistance system. In: 2010 IEEE intelligent vehicles symposium. IEEE, pp 174–178

    Google Scholar 

  • Techcrunsh (2019) Completely driverless Waymo cars are on the way. https://techcrunch.com/2019/10/09/waymo-to-customers-completely-driverless-waymo-cars-are-on-the-way/

  • UN (1948) United Nations General Assembly, Universal Declaration of Human Rights. General Assembly resolution 217 A. https://www.un.org/en/universal-declaration-human-rights/index.html. Accessed 16 Jan 2020

  • UN (1949) United Nations “Convention on Road Traffic, Geneva, September 19, 1949”. https://treaties.un.org/doc/Publication/MTDSG/Volume%20I/Chapter%20XI/XI-B-1.en.pdf. Accessed 16 Jan 2020

  • UN (1968) United Nations “Convention on road traffic, Vienna, November 8, 1968”. https://treaties.un.org/doc/Treaties/1977/05/19770524%2000-13%20AM/Ch_XI_B_19.pdf. Accessed 16 Jan 2020

  • UNECE (2016) United Nations Economic Commission for Europe, UNECE paves the way for automated driving by updating UN international convention. https://www.unece.org/info/media/presscurrent-press-h/transport/2016/unece-paves-the-way-for-automated-driving-by-updating-un-international-convention/doc.html. Accessed 16 Jan 2020

  • Van den Hoven J, Miller S, Pogge T (2017) The design turn in applied ethics. In: Van den Hoven J (ed) Designing in ethics. Cambridge University Press, Cambridge, pp 11–31. https://doi.org/10.1017/9780511844317.002

  • Walch M, Lange K, Baumann M et al (2015) Autonomous driving: investigating the feasibility of car-driver handover assistance. In: Proceedings of the 7th international conference on automotive user interfaces and interactive vehicular applications. ACM, pp 11–18

    Google Scholar 

  • Walch M, Baumann M, Jaksche L et al (2017a) Touch screen maneuver approval mechanisms for highly automated vehicles: a first evaluation. AutomotiveUI 2017—Adjunct proceedings of 9th international ACM conference on automotive user interfaces interactive vehicle application, pp 206–211. https://doi.org/10.1145/3131726.3131756

  • Walch M, Mühl K, Kraus J et al (2017b) From car-driver-handovers to cooperative interfaces: visions for driver–vehicle interaction in automated driving, pp 273–294. https://doi.org/10.1007/978-3-319-49448-7_10

  • Walch M, Mühl K, Baumann M, Weber M (2018) Click or hold: usability evaluation of maneuver approval techniques in highly automated driving. Conference on human factors in computing systems—Proceedings 2018-April, pp 1–6. https://doi.org/10.1145/3170427.3188614

  • Walch, M, Colley, M, Weber M (2019a) Driving-task-related human-machine interaction in automated driving: towards a bigger picture. In: Adjunct proceedings of the 7th international conference on automotive user interfaces and interactive vehicular. AutomotiveUI 2019, pp 427–433. https://doi.org/10.1145/3349263.3351527

  • Walch M, Colley M, Weber M (2019b) CooperationCaptcha: on-the-fly object labeling for highly automated vehicles. In: Conference on human factors in computing systems—Proceedings, pp 1–6. https://doi.org/10.1145/3290607.3313022

  • Walch M, Lehr D, Colley M, Weber M (2019c) Don’t you see them? Towards gaze-based interaction adaptation for driver-vehicle cooperation. In: Adjunct proceedings—11th international ACM conference on automotive user interfaces interactive vehicle application. AutomotiveUI 2019, pp 232–237. https://doi.org/10.1145/3349263.3351338

  • Walch M, Woide M, Mühl K et al (2019d) Cooperative overtaking: overcoming automated vehicles’ obstructed sensor range via driver help. In: Proceedings—11th international ACM conference automotive user interfaces interactive vehicle application. AutomotiveUI 2019, pp 144–155. https://doi.org/10.1145/3342197.3344531

  • Weng F, Angkititrakul P, Shriberg E et al (2016) Conversational in-vehicle dialog systems: the past, present, and future. IEEE Sig Process Mag 33(6):49–60

    CrossRef  Google Scholar 

  • WHO (2018) World Health Organization “Global status report on road safety 2018”. https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/. Accessed 16 Jan 2020

  • WIVW (2020) Würzburger Institut für Verkehrswissenschaften. “Fahrsimulation und SILAB”. https://wivw.de/de/silab. Accessed 16 Jan 2020

  • Woide M, Stiegemeier D, Baumann M (2019) A methodical approach to examine conflicts in context of driver—autonomous vehicle—interaction. In: Proceedings of international driving symposium on human factors in driver assessment, training, and vehicle design, pp 314–320

    Google Scholar 

  • Young MS, Young NA, Stanton HD (2007) Driving automation: learning from aviation about design philosophies. Int J Veh Des 45(3):323–338

    CrossRef  Google Scholar 

  • Yu D, Deng L (eds) (2014) Automatic speech recognition: a deep learning approach. Springer, London

    Google Scholar 

  • Zeyer A, Doetsch P, Voigtlaender P et al (2017) A comprehensive study of deep bidirectional LSTM RNNs for acoustic modeling in speech recognition. In: Proceedings of the 2017 IEEE international conference on acoustics, speech, and signal processing. New Orleans, USA

    Google Scholar 

Download references

Acknowledgements

We would like to thank the German Federal Ministry of Education and Research (BMBF Bundesministerium für Bildung und Forschung) for its financial support, VDI/VDE Innovation + Technik GmbH for its coordination work, and our companies and institutions for their general support during the project runtime.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Erbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Erbach, R. et al. (2020). KoFFI—The New Driving Experience: How to Cooperate with Automated Driving Vehicles. In: Meixner, G. (eds) Smart Automotive Mobility. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-030-45131-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45131-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45130-1

  • Online ISBN: 978-3-030-45131-8

  • eBook Packages: Computer ScienceComputer Science (R0)