Skip to main content

Sensors and Biosensors for Environment Contaminants

  • Chapter
  • First Online:
Nanosensor Technologies for Environmental Monitoring

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

The growing environmental pollution especially in reference to toxic heavy elements, emerging contaminants, and further perilous agents is a severe global alarm. Being a worldwide concern, there is a crucial necessity to plan, propose, and develop tactical measuring practices with greater efficacy and precision for detection of a broader spectrum of various pollutants. Moreover, developing accurate and reliable tools can assist the in-process and the real-time monitoring of generated or released environmental contaminants from a process. Furthermore, real-time monitoring has the advantage of minimizing the high consumption of numerous hazardous chemicals and reagents along with a superior benefit of on-site analysis of pollutant composition before being released to the environment. Through the vital scientific progresses and green synthesis of nanoparticles, electrochemical sensors/biosensors have gained significant consideration as a strong solution to pollution detection and monitoring. Electrochemical sensors/biosensors can be an outstanding analytical tool for monitoring and detection programs. Electrochemical sensors/biosensors and other related sciences (Bio-nanotechnology and bioelectronics) are currently flourishing fields that will significantly impact developing novel and innovative sensing techniques and consequently environmental analysis approaches in future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad N, Sharma S, Alam MK et al (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81:81–86. https://doi.org/10.1016/j.colsurfb.2010.06.029

    Article  CAS  PubMed  Google Scholar 

  • Alam A, Ravindran A, Chandran P, Sudheer Khan S (2015) Highly selective colorimetric detection and estimation of Hg2+ at nano-molar concentration by silver nanoparticles in the presence of glutathione. Spectrochim Acta A Mol Biomol Spectrosc 137:503–508

    CAS  PubMed  Google Scholar 

  • Arain S, John GT, Kranse C, Gerlach J, Wolfbeis OS, Klimant I (2006) Characterization of microtiterplates with integrated optical sensors for oxygen and pH, and their applications to enzyme activity screening, respirometry, and toxicological assays. Sensors Actuators B 113:639–648

    CAS  Google Scholar 

  • Arduini F, Guidone S, Amine A, Palleschi G, Moscone D (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors Actuators B Chem 179:201–208

    CAS  Google Scholar 

  • Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G (2015) Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta 182:643–651

    CAS  Google Scholar 

  • Azmuddin AM, Khan AA, Ajab H (2017) Environmental monitoring by eco-friendly fabricated carbon-modified electrode sensor. Int J Biosens Bioelectron 2(5):141–144

    Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A et al (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170. https://doi.org/10.1016/j.materresbull.2007.06.020

    Article  CAS  Google Scholar 

  • Belkhamssa N, da Costa JP, Justino CIL et al (2016a) Development of an electrochemical biosensor for alkylphenol detection. Talanta 158:30–34

    CAS  PubMed  Google Scholar 

  • Belkhamssa N, Justino CIL, Santos PSM, Cardoso S et al (2016b) Label-free disposable immunosensor for detection of atrazine. Talanta 146:430–434

    CAS  PubMed  Google Scholar 

  • Beni V, Ogurtsov V, Bakunin N et al (2005) Development of a portable electroanalytical system for the stripping voltammetry of metals: determination of copper in acetic acid soil extracts. Anal Chim Acta 552:190–200

    CAS  Google Scholar 

  • Bies C, Lehr CM, Woodley JF (2004) Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 56:425–435

    CAS  PubMed  Google Scholar 

  • Bordeaux J, Welsh AW, Agarwal S, Killiam E, Baquero MT, Hanna JA, Anagnostou VK, Rimm DL (2010) Antibody validation. BioTechniques 48:197–209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chai Y, Niu X, Chen C, Zhao H, Lan M (2013) Carbamate insecticide sensing based on acetylcholinesterase/Prussian blue-multi-walled carbon nanotubes/screen-printed electrodes. Anal Lett 46:803–817

    CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R et al (2006) Synthesis of gold nanotriangles and silver nanoparticles using aloe vera plant extract. Biotechnol Prog. https://doi.org/10.1021/bp0501423

  • Chansuvarn W, Tuntulani T, Imyim A (2015) Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold-based nanomaterials. TrAC Trends Anal Chem 65:83–96

    CAS  Google Scholar 

  • Chen L, Gorski W (2001) Bioinorganic composites for enzyme electrodes. Anal Chem 73(13):2862–2868

    CAS  PubMed  Google Scholar 

  • Chen Y-L, Tuan H-Y, Tien C-W et al (2009) Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog 25:1260–1266. https://doi.org/10.1002/btpr.199

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Kim HD (2009) Development of a portable heavy metal ion analyzer using disposable screen-printed electrodes. Bull Kor Chem Soc 30(8):1881–1883

    CAS  Google Scholar 

  • Colas F, Crassous M-P, Laurent S et al (2016) A surface plasmon resonance system for the underwater detection of domoic acid. Limnol Oceanogr Methods 14:456–465

    CAS  Google Scholar 

  • Cooper J, Bolbot J, Saini S et al (2007) Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water Air Soil Pollut 79(1):183–195

    Google Scholar 

  • Das RN, Lin HT, Lauffer JM et al (2011) Printable electronics: towards materials development and device fabrication. Circuit World 37:38–45

    CAS  Google Scholar 

  • Deng Y, Liu K, Liu Y, Dong H, Li S (2016) An novel acetylcholinesterase biosensor based on nano-porous pseudo carbon paste electrode modified with gold nanoparticles for detection of methyl parathion. J Nanosci Nanotechnol 16:9460–9467

    CAS  Google Scholar 

  • Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170. https://doi.org/10.1016/j.elecom.2007.01.007

    Article  CAS  Google Scholar 

  • Eissa S, Siaj M, Zourob M (2015) Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron 69:148–154

    CAS  PubMed  Google Scholar 

  • El Mhammedi MA, Bakasse M, Chtaini A (2007) Electrochemical studies and square wave voltammetry of paraquat at natural phosphate modified carbon paste electrode. J Hazard Mater 145(1–2):1–7

    PubMed  Google Scholar 

  • Ellington AA, Kullo IJ, Bailey KR, Klee GG (2010) Antibody-based protein multiplex platforms: technical and operational challenges. Clin Chem 56:186–193

    CAS  PubMed  Google Scholar 

  • Evtugyn GA, Budnikov HC, Nikolskaya EB (1998) Sensitivity and selectivity of electrochemical enzyme sensors for inhibitor determination. Talanta 46:465–484

    CAS  PubMed  Google Scholar 

  • Fan L, Zhao G, Shi H et al (2014) A femtomolar level and highly selective 17-estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. Environ Sci Technol 48:5754–5761

    CAS  PubMed  Google Scholar 

  • Fei A, Liu Q, Huan J, Qian J, Dong X et al (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129

    CAS  PubMed  Google Scholar 

  • Freire R, Duran N, Kubota L (2002) Electrochemical biosensor-based devices for continuous phenols monitoring in environmental matrices. J Braz Chem Soc 13(4):456–462

    CAS  Google Scholar 

  • Gao C, Yu XY, Xu RX, Liu JH, Huang XJ (2012) AlOOH-reduced graphene oxide nanocomposites: one-pot hydrothermal synthesis and their enhanced electrochemical activity for heavy metal ions. ACS Appl Mater Interfaces 4:4672–4682

    CAS  PubMed  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E et al (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2:397–401. https://doi.org/10.1021/nl015673

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 9:22–28. https://doi.org/10.1007/BF03215529

    Article  Google Scholar 

  • Gibb HJ, Lees PS, Pinsky PF, Rooney BC (2000) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126

    CAS  PubMed  Google Scholar 

  • Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (Part 2): non-sol-gel protein-polymer biocomposites. Trends Biotechnol 18(11):469–479

    CAS  PubMed  Google Scholar 

  • González-Techera A, Zon MA, Molina PG et al (2015) Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay. Biosens Bioelectron 64:650–656

    PubMed  Google Scholar 

  • Goyer RA (1990) Lead toxicity: from overt to subclinical to subtle health effects. Environ Health Perspect 86:177–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8:1400–1458

    CAS  PubMed  Google Scholar 

  • Gui R, An X, Su H, Shen W, Chen Z, Wang X (2012) A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF–ON fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta 94:257–262

    CAS  PubMed  Google Scholar 

  • Gui R, An X, Huang W (2013) An improved method for ratiometric fluorescence detection of pH and Cd2+ using fluorescein isothiocyanatequantum dots conjugates. Anal Chim Acta 767:134–140

    CAS  PubMed  Google Scholar 

  • Guo L, Li Z, Chen H, Wu Y, Chen L, Song Z, Lin T (2017) Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal Chim Acta 967:59–63

    CAS  PubMed  Google Scholar 

  • Hamula CLA, Zhang H, Li F, Wang Z, Le Chris X, Li X-F (2011) Selection and analytical applications of aptamers binding microbial pathogens. TrAC Trends Anal Chem 30:1587–1597

    CAS  Google Scholar 

  • Hart J, Abass A, Cowell D (2002) Development of disposable amperometric sulfur dioxide biosensors based on screen printed electrodes. Biosens Bioelectron 17(5):389–394

    CAS  PubMed  Google Scholar 

  • Hoinka J, Berezhnoy A, Dao P, Sauna ZE, Gilboa E, Przytycka TM (2015) Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery. Nucleic Acids Res 43:5699–5707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CC, Chang H (2006) Selective gold-nanoparticle-based “turn-on” fluorescent sensors for detection of mercury (II) in aqueous solution. Anal Chem 78:8332–8338

    CAS  PubMed  Google Scholar 

  • Huang CC, Huang YF, Cao Z, Tan W, Chang HT (2005) Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem 77:5735–5741

    CAS  PubMed  Google Scholar 

  • Iravani S (2014, 2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not:1–18. https://doi.org/10.1155/2014/359316

  • Jeyapragasam T, Saraswathi R (2014) Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide-chitosan nanocomposite. Sensors Actuators B Chem 191:681–687

    CAS  Google Scholar 

  • Jiajie L, Hongwu L, Caifeng L, Qiangqiang F, Caihong H, Zhi L, Tianjiu J, Yong T (2014) Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium. Nanotechnology 25:495501

    Google Scholar 

  • Jiang D, Du X, Liu Q et al (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140:6404–6411

    CAS  PubMed  Google Scholar 

  • Ke J, Li X, Shi Y, Zhao Q, Jiang X (2012) A facile and highly sensitive probe for Hg(II) based on metal-induced aggregation of ZnSe/ZnS quantum dots. Nanoscale 4:4996–5001

    CAS  PubMed  Google Scholar 

  • Khan AAA, Abdullah MA (2014) Bismuth-modified hydroxyapatite carbon electrode for simultaneous in-situ cadmium and lead analysis. Int J Electrochem Sci 8:195–203

    Google Scholar 

  • Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2011) Electrochemical sensors and biosensors. Anal Chem 84:685–707

    PubMed  PubMed Central  Google Scholar 

  • Koets M, van der Wijk T, van Eemeren JTWM, van Amerongen A, Prins MWJ (2009) Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosens Bioelectron 24:1893–1898

    CAS  PubMed  Google Scholar 

  • Kowshik M, Vogel W, Urban J et al (2002) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14:815–818. https://doi.org/10.1002/1521-4095(20020605)14:11%3c815:AID-ADMA815%3e3.0.CO;2-K

    Article  CAS  Google Scholar 

  • Kwon HSP, Kil Yoont J, Seo ML (2000) Plant tissue-based amperometric sensor for determination of phenols in methylene chloride. J Korean Chem Soc 44(4):376–379

    CAS  Google Scholar 

  • Lee S-M, Lee W-Y (2002) Determination of heavy metal ions using conductometric biosensor based on sol-gel-immobilized urease. Bull Kor Chem Soc 23(8):1169–1172

    CAS  Google Scholar 

  • Lei Y, Mulchandani P et al (2007) Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. Appl Biochem Biotechnol 136:243–245

    CAS  PubMed  Google Scholar 

  • Li T, Wang E, Dong S (2010) Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal Chem 82:1515–1520

    CAS  PubMed  Google Scholar 

  • Li Z, Qu S, Cui L, Zhang S (2017) Detection of carbofuran pesticide in seawater by using an enzyme biosensor. J Coast Res 80:1–5

    CAS  Google Scholar 

  • Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    CAS  Google Scholar 

  • Liu X, Xiang JJ, Tang Y, Zhang XL, Fu QQ, Zou JH, Lin Y (2012) Colloidal gold nanoparticle probe-based immunochromatographic assay for the rapid detection of chromium ions in water and serum samples. Anal Chim Acta 745:99–105

    CAS  PubMed  Google Scholar 

  • Liu S, Zheng Z, Li X (2013) Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal Bioanal Chem 405:63–90

    CAS  PubMed  Google Scholar 

  • Liu X, Li W-J, Yang Y, Mao L-G, Peng ZA (2014a) Label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sensors Actuators B Chem 191:408–414

    CAS  Google Scholar 

  • Liu M, Wang Z, Zong S, Chen H, Zhu D, Wu L, Hu G, Cui Y (2014b) SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica Sphere@Au nanoparticles. ACS Appl Mater Interfaces 6:7371–7379

    CAS  PubMed  Google Scholar 

  • Low SY, Hill JE, Peccia J (2009) DNA aptamers bind specifically and selectively to (1→3)-β-d-glucans. Biochem Biophys Res Commun 378:701–705

    CAS  PubMed  Google Scholar 

  • Luan W, Yang H, Wan Z, Yuan B, Yu X, Tu S-T (2012) Mercaptopropionic acid capped CdSe/ZnS quantum dots as fluorescence probe for lead(II). J Nanopart Res 14:1–8

    Google Scholar 

  • Ma J, Chen Y, Hou Z, Jiang W, Wang L (2013) Selective and sensitive mercuric(II) ion detection based on quantum dots and nicking endonuclease assisted signal amplification. Biosens Bioelectron 43:84–87

    CAS  PubMed  Google Scholar 

  • Marques I, da Costa JP, Justino C, Santos P, Duarte K et al (2017) Carbon nanotube field effect biosensor for the detection of toxins in seawater. J Environ Anal Chem 97:597–605

    CAS  Google Scholar 

  • Matsushita K, Toyama H, Yamada M, Adachi O (2002) Quinoproteins: structure, function, and biotechnological applications. Appl Microbiol Biotechnol 58(1):13–22

    CAS  PubMed  Google Scholar 

  • Mayorga-Martinez C, Pino F, Kurbanoglua S, Rivas L, Ozkan SA, Merkoci A (2014) Iridium oxide nanoparticles induced dual catalytic/inhibition based detection of phenol and pesticide compounds. J Mater Chem B 2:2233–2239

    CAS  PubMed  Google Scholar 

  • McNamee SE, Elliott CT, Delahaut P, Campbell K (2013) Multiplex biotoxin surface plasmon resonance method for marine biotoxins in algal and seawater samples. Environ Sci Pollut Res 20:6794–6807

    CAS  Google Scholar 

  • Meng X, Wei J, Ren X, Ren J, Tang F (2013) A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron 47:402–407

    CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    CAS  Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 1:1. https://doi.org/10.1155/2011/546074

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D et al (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519. https://doi.org/10.1021/nl0155274

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nanogold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189:519–525. https://doi.org/10.1016/j.jhazmat.2011.02.069

    Article  CAS  PubMed  Google Scholar 

  • Nazir MS, Wahjoedi BA, Yussof AW, Abdullah MA (2013) Eco-friendly extraction, characterization and modification of microcrystalline cellulose from oil palm empty fruit bunches. BioRes 8(2):2161–2172

    CAS  Google Scholar 

  • Nunes GS, Lins JAP, Silva FGS, Araujo LC et al (2014) Design of a macroalgae amperometric biosensor; application to the rapid monitoring of organophosphate insecticides in an agroecosystem. Chemosphere 111:623–630

    CAS  PubMed  Google Scholar 

  • Olaniran AO, Hiralal L, Pillay B (2011) Whole-cell bacterial biosensors for rapid and effective monitoring of heavy metals and inorganic pollutants in wastewater. J Environ Monit 13:2914–2920

    CAS  PubMed  Google Scholar 

  • Oliveira TMBF, Barroso MF, Morais S et al (2013) Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 106:137–143

    CAS  PubMed  Google Scholar 

  • Pan Y, Zhou J, Su K, Hu N, Wang P (2017) A novel quantum dot fluorescence immunosensor based on magnetic beads and portable flow cytometry for detection of okadaic acid. Procedia Technol 27:214–216

    Google Scholar 

  • Peng L, Dong S, Wei W, Yuan X, Huang T (2017) Synthesis of reticulated hollow spheres structure NiCo2S4 and its application in organophosphate pesticides biosensor. Biosens Bioelectron 92:563–569

    CAS  PubMed  Google Scholar 

  • Ragavan KV, Selvakumar LS, Thakur MS (2013) Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chem Commun 49:5960–5962

    CAS  Google Scholar 

  • Raliya R, Tarafdar JC (2014) Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 4:93. https://doi.org/10.1007/s40089-014-0093-8

    Article  CAS  Google Scholar 

  • Renedo OD, Alonso-Lomillo MA, Martínez MJ (2007) Recent developments in the field of screen-printed electrodes and their related applications. Talanta 73(2):202–219

    CAS  PubMed  Google Scholar 

  • Rico MA, Olivares-Marín M, Gil EP (2009) Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II). Talanta 80(2):631–635

    PubMed  Google Scholar 

  • Rios A, Escarpa A, González MC, Crevillén AG (2006) Challenges of analytical microsystems. Trends Anal Chem 25:467–479

    CAS  Google Scholar 

  • Riu J, Maroto A, Ruis FX (2006) Nanosensors in environmental analysis. Talanta 69:288–301

    CAS  PubMed  Google Scholar 

  • Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzan LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3:1304–1315

    CAS  PubMed  Google Scholar 

  • Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze H, Schmid R, Bachmann T (2002) Rapid detection of neurotoxic insecticides in food using disposable acetylcholinesterase biosensors and simple solvent extraction. Anal Bioanal Chem 372(2):268–272

    CAS  PubMed  Google Scholar 

  • Selid P, Xu H, Collins EM, Striped Face-Collins M, Zhao JX (2009) Sensing mercury for biomedical and environmental monitoring. Sensors 9:5446–5459

    CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 1:1. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  Google Scholar 

  • Shi H, Zhao G, Liu M, Fan L, Cao T (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761

    CAS  PubMed  Google Scholar 

  • Shitanda I, Irisako T, Itagaki M (2011) Three-electrode type micro-electrochemical cell fabricated by screen-printing. Sensors Actuators B Chem 160:1606–1609

    CAS  Google Scholar 

  • Singh J, Dutta T, Kim K, Rawat M, Samddar P, Kumar P (2018) Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol 16:84

    CAS  Google Scholar 

  • Sinibaldi F, Bongiovanni C, Ferri T, Santucci R (2001) Trends Inorg Chem 7:77–87

    CAS  Google Scholar 

  • Sun D, Xie X, Cai Y, Zhang H, Wu K (2007) Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film. Anal Chim Acta 581:27–31

    CAS  PubMed  Google Scholar 

  • Sundarmurugasan R, Gumpu MB, Ramachandra BL et al (2016) Simultaneous detection of monocrotophos and dichlorvos in orange samples using acetylcholinesterase-zinc oxide modified platinum electrode with linear regression calibration. Sensors Actuators B Chem 230:306–313

    CAS  Google Scholar 

  • Svancara I, Walcarius A, Kalcher K et al (2009) Carbon paste electrodes in the new millennium. Cent Eur J Chem 7(4):598–656

    CAS  Google Scholar 

  • Tang S, Tong P, Li H, Tang J, Zhang L (2013) Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplification and quantum dots tagging. Biosens Bioelectron 42:608–611

    CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    CAS  Google Scholar 

  • Toghill KE, Xiao L, Wildgoose GG, Compton RG (2009) Electroanalytical determination of cadmium(II) and lead(II) using an antimony nanoparticle modified boron-doped diamond electrode. Electroanalysis 21:1113–1118

    CAS  Google Scholar 

  • Tombelli S, Mascini M, Turner A (2002) Improved procedures for immobilization of oligonucleotides on gold coated piezoelectric quartz crystals. Biosens Bioelectron 17(11–12):929–936

    CAS  PubMed  Google Scholar 

  • Vikesland PJ, Wigginton KR (2010) Nanomaterial enabled biosensors for pathogen monitoring—a review. Environ Sci Technol 44:3656–3669

    CAS  PubMed  Google Scholar 

  • Vollmer C, Redel E, Abu-Shandi K et al (2010) Microwave irradiation for the facile synthesis of transition-metal nanoparticles (NPs) in ionic liquids (ILs) from metal-carbonyl precursors and Ru-, Rh-, and Ir-NP/IL dispersions as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene. Chem A Eur J 16:3849–3858. https://doi.org/10.1002/chem.200903214

    Article  CAS  Google Scholar 

  • Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100:2555–2566

    CAS  PubMed  Google Scholar 

  • Wang Q, Fang J, Cao D, Li H et al (2015) An improved functional assay for rapid detection of marine toxins, saxitoxin and brevetoxin using a portable cardiomyocyte-based potential biosensor. Biosens Bioelectron 72:10–17

    CAS  PubMed  Google Scholar 

  • Wei M, Zeng G, Lu Q (2014) Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim Acta 181:121–127

    CAS  Google Scholar 

  • Wen L, Lin Z, Gu P et al (2009) Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanoparticle Res 11:279–288. https://doi.org/10.1007/s11051-008-9378-z

    Article  CAS  Google Scholar 

  • Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew Chem Int Ed Engl 49:2114–2138

    CAS  PubMed  Google Scholar 

  • Yang L, Wang G, Liu Y, Wang M (2013) Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles-carboxylic graphene-nafion modified electrode for detection of pesticides. Talanta 113:135–141

    CAS  PubMed  Google Scholar 

  • Yildirim N, Long F, He M et al (2014) A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environ Sci Process Impacts 16:1379–1386

    CAS  PubMed  Google Scholar 

  • Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C 111:12839–12847. https://doi.org/10.1021/jp073923q

    Article  CAS  Google Scholar 

  • Young S, Hart J, Dowman A, Cowell D (2001) The non-specific inhibition of enzymes by environmental pollutants: a study of a model system towards the development of electrochemical biosensor arrays. Biosens Bioelectron 16(9–12):887–894

    CAS  PubMed  Google Scholar 

  • Yurkov AM, Kemler M, Begerow D (2011) Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest soils. PLoS One 1:1. https://doi.org/10.1371/journal.pone.0023671

    Article  CAS  Google Scholar 

  • Zhang Y, Chen M, Li H et al (2017a) A molybdenum disulfide/gold nanorod composite-based electrochemical immunosensor for sensitive and quantitative detection of microcystin-LR in environmental samples. Sensors Actuators B Chem 244:606–615

    CAS  Google Scholar 

  • Zhang W, Han C, Jia B et al (2017b) A 3D graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electrochim Acta 236:319–327

    CAS  Google Scholar 

  • Zhao Y, Zhang W, Lin Y, Du D (2013) The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion. Nanoscale 5:1121–1126

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, H.M. (2020). Sensors and Biosensors for Environment Contaminants. In: Inamuddin, Asiri, A. (eds) Nanosensor Technologies for Environmental Monitoring. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-45116-5_6

Download citation

Publish with us

Policies and ethics