Skip to main content

Hash-Based Tree Similarity and Simplification in Genetic Programming for Symbolic Regression

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12013)

Abstract

We introduce in this paper a runtime-efficient tree hashing algorithm for the identification of isomorphic subtrees, with two important applications in genetic programming for symbolic regression: fast, online calculation of population diversity and algebraic simplification of symbolic expression trees. Based on this hashing approach, we propose a simple diversity-preservation mechanism with promising results on a collection of symbolic regression benchmark problems.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-45093-9_44
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-45093-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    Inexact due to the possibility of hash collisions causing the algorithm to return the wrong answer. With a reasonable hash function, collision probability is negligible.

  2. 2.

    The Sørensen-Dice coefficient (Eq. 1) returns a value in the interval [0, 1].

References

  1. Breiman, L., Friedman, J., Stone, C., Olshen, R.: Classification and Regression Trees. The Wadsworth and Brooks-Cole Statistics-Probability Series. Taylor & Francis, Routledge (1984)

    MATH  Google Scholar 

  2. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: an analysis of measures and correlation with fitness. IEEE Trans. Evol. Comput. 8(1), 47–62 (2004)

    CrossRef  Google Scholar 

  3. Burks, A.R., Punch, W.F.: An analysis of the genetic marker diversity algorithm for genetic programming. Genet. Program Evolvable Mach. 18(2), 213–245 (2016). https://doi.org/10.1007/s10710-016-9281-9

    CrossRef  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  5. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Statist. 19(1), 1–67 (1991)

    MathSciNet  CrossRef  Google Scholar 

  6. Luke, S.: Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 4(3), 274–283 (2000)

    CrossRef  Google Scholar 

  7. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

    CrossRef  Google Scholar 

  8. Pagie, L., Hogeweg, P.: Evolutionary consequences of coevolving targets. Evol. Comput. 5(4), 401–418 (1997)

    CrossRef  Google Scholar 

  9. Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–217. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36599-0_19

    CrossRef  MATH  Google Scholar 

  10. Valiente, G.: An efficient bottom-up distance between trees. In: Proceedings of the 8th International Symposium on String Processing and Information Retrieval, pp. 212–219. IEEE Computer Science Press (2001)

    Google Scholar 

  11. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3), 35:1–35:33 (2013)

    CrossRef  Google Scholar 

  12. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)

    CrossRef  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge support by the Christian Doppler Research Association and the Federal Ministry of Digital and Economic Affairs within the Josef Ressel Centre for Symbolic Regression.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Burlacu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Burlacu, B., Kammerer, L., Affenzeller, M., Kronberger, G. (2020). Hash-Based Tree Similarity and Simplification in Genetic Programming for Symbolic Regression. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2019. EUROCAST 2019. Lecture Notes in Computer Science(), vol 12013. Springer, Cham. https://doi.org/10.1007/978-3-030-45093-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45093-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45092-2

  • Online ISBN: 978-3-030-45093-9

  • eBook Packages: Computer ScienceComputer Science (R0)