Skip to main content

Molecular Basis of Impulse Generation and Propagation

  • Chapter
  • First Online:
Heart Rhythm Disorders
  • 941 Accesses

Abstract

In 1952, Hodgkin and Huxley reported their findings on the channel theory and the gating system in the squid axon, by demonstrating how channels open and close and how ions pass through open channels. In this chapter the author discusses the ionic basis of the cardiac action potential, the role of sodium channels, voltage-gated calcium channels, voltage-gated potassium channels, the genesis of the funny current of the sinus node, and gap junction channels. Major advances in basic electrophysiology of the conducting system including cloning and sequencing of the genes responsible for ion channels hold the futuristic potential of genetic manipulation in the treatment of hereditary as well as acquired cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117:500–44.

    Article  CAS  Google Scholar 

  2. Oudit GY, Becks PH. Voltage-gated potassium channels. In: Zipes DP, Jalife J, Stevenson WG, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia, PA 19103-2899: Elsevier Health Sciences; 2018 Edition.

    Google Scholar 

  3. Grant AO. Cardiac ion channels. Circ Arrhythm Electrophysiol. 2009;2:185–94.

    Article  Google Scholar 

  4. Hille B. Ionic channels of excitable membranes. 3rd ed. Sunderland: Sinauer Associates Inc.; 2001.

    Google Scholar 

  5. Li RA, Tomaselli G, Malban E. Sodium channels. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. Philadelphia, PA 19103-2899: Elsevier Health Sciences; 2004.

    Google Scholar 

  6. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1992–391.

    Article  Google Scholar 

  7. Brugada J, Brugada P, Brugada R. The syndrome of right bundle branch block ST segment elevation in V1 to V3 and sudden death—the Brugada syndrome. Europace. 1999;1:156–66.

    Article  CAS  Google Scholar 

  8. Chiang C-E, Roden DM. The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol. 2000;36:1–12.

    Article  CAS  Google Scholar 

  9. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103:89–95.

    Article  CAS  Google Scholar 

  10. Vaughan Williams EM. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Cardiovasc Pharmacol. 1984;24:129–47.

    CAS  Google Scholar 

  11. Bers DM. Excitation-contraction coupling and cardiac contractile force. 2nd ed. Dordrecht: Kluwer Academic Publishers; 2001.

    Book  Google Scholar 

  12. Beran BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol. 1989;51:367–84.

    Article  Google Scholar 

  13. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    Article  CAS  Google Scholar 

  14. Platzer J, Engel J, Schrott-Fischer A, et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell. 2000;102:89–97.

    Article  CAS  Google Scholar 

  15. Marger L, Mesirca P, Alig J, et al. Functional roles of Ca(v)1.3, Ca(v)3.1 and HCN channels in automaticity of mouse atrioventricular cells: insights into the atrioventricular pacemaker mechanism. Channels (Austin). 2011;5:251–61.

    Article  CAS  Google Scholar 

  16. Splawski I, Timothy KW, Decher N, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci U S A. 2005;102:8089–96; discussion 8086–8088.

    Article  CAS  Google Scholar 

  17. Betzenhauser MJ, Pitt GS, Antzelevitch C. Calcium channel mutations in cardiac arrhythmia syndromes. Curr Mol Pharmacol. 2015;8:133–42.

    Article  CAS  Google Scholar 

  18. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115:442–9.

    Article  Google Scholar 

  19. Burashnikov E, Pfeiffer R, Barajas-Martinez H, et al. Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Heart Rhythm. 2010;7:1872–82.

    Article  Google Scholar 

  20. Cordeiro JM, Marieb M, Pfeiffer R, Calloe K, Burashnikov E, Antzelevitch C. Accelerated inactivation of the L-type calcium current due to a mutation in CACNB2b underlies Brugada syndrome. J Mol Cell Cardiol. 2009;46:695–703.

    Article  CAS  Google Scholar 

  21. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001;104:569–80.

    Article  CAS  Google Scholar 

  22. Pogwizd SM, Bers DM. Na/Ca exchange in heart failure: contractile dysfunction and arrhythmogenesis. Ann N Y Acad Sci. 2002;976:454–65.

    Article  CAS  Google Scholar 

  23. Fye WB. The origin of the heart beat: a tale of frogs, jellyfish, and turtles. Circulation. 1987;76:493–500.

    Article  CAS  Google Scholar 

  24. Geison G. The Royal institution lectures of 1869. In: Michael Foster and the Cambridge School of Physiology, vol. 1978. Princeton: Princeton University Press. p. 200.

    Google Scholar 

  25. Mommersteeg MT, Hoogaars WM, Prall OW, et al. Molecular pathway for the localized formation of the sinoatrial node. Circ Res. 2007;100:354–62.

    Article  CAS  Google Scholar 

  26. DiFrancesco D. A study of the ionic nature of the pacemaker current in calf Purkinje fibres. J Physiol. 1981;314:377–93.

    Article  CAS  Google Scholar 

  27. DiFrancesco D. Block and activation of the pacemaker channel in calf Purkinje fibres effects of potassium, caesium and rubidium. J Physiol. 1982;222:329–47.

    Google Scholar 

  28. Biel M, Schneider A, Wahl C. Cardiac HCN channels structure, function, and modulation. Trends Cardiovasc Med. 2002;12:202–16.

    Article  Google Scholar 

  29. Lakatta EG, Maltsev VA, Vinogradova TM. A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res. 2010;106:659–73.

    Article  CAS  Google Scholar 

  30. Lakatta EG, DiFrancesco D. What keeps us ticking: a funny current, a calcium clock, or both? J Mol Cell Cardiol. 2009;47:157–70.

    Article  CAS  Google Scholar 

  31. Thollon C, Bedut S, Villeneuve N, et al. Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br J Pharmacol. 2007;150:37–46.

    Article  CAS  Google Scholar 

  32. Borer JS, Fox K, Jaillon P, et al. for the ivabradine Investigators Group. Antianginal and antiischemic effects of ivabradine, an If inhibitor, in stable angina. A randomized, double-blind, multicentered, placebo-controlled trial. Circulation. 2003;107:817–23.

    Google Scholar 

  33. Herrmann S, Stieber J, Ludwig A. Pathophysiology of HCN channels. Pflugers Arch. 2007;454:517.

    Article  CAS  Google Scholar 

  34. Rohr S. Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res. 2004;62:3019–322.

    Article  Google Scholar 

  35. Spach M. Anisotropy of cardiac tissue: a major determinant of conduction? J Cardiovasc Electrophysiol. 1999;10:887–90.

    Article  CAS  Google Scholar 

  36. Spray DC, White RL, Mazet F, Bennett MV. Regulation of gap junctional conductance. Am J Phys. 1985;248:H753–64.

    CAS  Google Scholar 

  37. Severs NJ, Bruce AF, Dupont E, Rothery S. Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc Res. 2008;80:9–19.

    Article  CAS  Google Scholar 

  38. Kanagaratnam P, Rothery S, Patel P, Severs NJ, Peters NS. Relative expression of immunolocalized connexins 40 and 43 correlates with human atrial conduction properties. J Am Coll Cardiol. 2002;39:116–23.

    Article  CAS  Google Scholar 

  39. Choudhury M, Boyett MR, Morris GM. Biology of the sinus node and its disease. Arrhythmia Electrophysiol Rev. 2015;4(1):28–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anthony Gomes .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, J.A. (2020). Molecular Basis of Impulse Generation and Propagation. In: Heart Rhythm Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-45066-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45066-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45065-6

  • Online ISBN: 978-3-030-45066-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics