Skip to main content

Nonequilibrium Energy Transfer in Nanostructures

  • Chapter
  • First Online:
Nano/Microscale Heat Transfer

Part of the book series: Mechanical Engineering Series ((MES))

  • 2816 Accesses

Abstract

This chapter begins with a description of the phenomenological theories in which the energy transport processes are represented by a single differential equation or a set of differential equations that can be solved with appropriate initial and boundary conditions. These equations are often called non-Fourier heat equations, which can be considered as extensions of the conventional heat diffusion equation based on Fourier’s law. The limitations of the phenomenological theories are discussed. While the BTE, Monte Carlo method, and MD simulations have been presented in previous chapters, this chapter stresses the application in solid nanostructures, including thermal boundary resistance (TBR) and multilayer structures. The equation of phonon radiative transfer (EPRT) is introduced and used to delineate the diffusive and ballistic heat conduction regimes in thin films. A heat conduction regime with respect to length and time scale is presented, followed by a summary of the contemporary methods for measuring thermal transport properties of solids, thin films, and nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959)

    MATH  Google Scholar 

  2. M.N. Özişik, Heat Conduction, 2nd ed., Wiley, New York, 1993; also D.W. Hahn and M.N. Özişik, Heat Conduction, 3rd ed., Wiley, New York, 2012

    Google Scholar 

  3. T.J. Bright, Z.M. Zhang, Common misperceptions of the hyperbolic heat equation. J. Thermophys. Heat Transfer 23, 601–607 (2009)

    Google Scholar 

  4. D. D. Joseph, L. Preziosi, Heat waves. Rev. Mod. Phys., 61, 41–73 (1989)

    Google Scholar 

  5. D.D. Joseph, L. Preziosi, Addendum to the paper ‘heat waves’. Rev. Mod. Phys. 62, 375–391 (1990)

    Google Scholar 

  6. D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior, 2nd edn. (Wiley, New York, 2015)

    Google Scholar 

  7. M.N. Özişik, D.Y. Tzou, On the wave theory in heat conduction. J. Heat Transfer 116, 526–535 (1994)

    Google Scholar 

  8. W.K. Yeung, T.T. Lam, A numerical scheme for non-Fourier heat conduction, Part I: one-dimensional problem formulation and applications. Numer. Heat Transfer B 33, 215–233 (1998)

    Google Scholar 

  9. A. Haji-Sheikh, W.J. Minkowycz, E.M. Sparrow, Certain anomalies in the analysis of hyperbolic heat conduction. J. Heat Transfer 124, 307–319 (2002)

    Google Scholar 

  10. J. Gembarovic, J. Gembarovic Jr., Non-Fourier heat conduction modeling in a finite medium. Int. J. Thermophys. 25, 1261–1268 (2004)

    MATH  Google Scholar 

  11. C.A. Bennett, R.R. Patty, Thermal wave interferometry: a potential application of the photoacoustic effect. Appl. Opt. 21, 49–54 (1982)

    Google Scholar 

  12. A. Mandelis (ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors (Elsevier, Amsterdam, 1987)

    Google Scholar 

  13. M.B. Rubin, Hyperbolic heat conduction and the second law. Int. J. Eng. Sci. 30, 1665–1676 (1992)

    MathSciNet  MATH  Google Scholar 

  14. C. Bai, A.S. Lavine, On hyperbolic heat conduction and the second law of thermodynamics. J. Heat Transfer 117, 256–263 (1995)

    Google Scholar 

  15. A. Barletta, E. Zanchini, Hyperbolic heat conduction and local equilibrium: a second law analysis. Int. J. Heat Mass Transfer 40, 1007–1016 (1997)

    MATH  Google Scholar 

  16. D. Jou, G. Lebon, J. Casas-Vázquez, Extended Irreversible Thermodynamics, 4th edn. (Springer, Berlin, 2010)

    MATH  Google Scholar 

  17. Z.M. Zhang, T.J. Bright, G.P. Peterson, Reexamination of the statistical derivations of Fourier’s law and Cattaneo’s equation. Nanoscale Microscale Thermophys. Eng. 15, 220–228 (2011)

    Google Scholar 

  18. J. Tavernier, Sur l’équation de conduction de la chaleur. Comptes Rendus Acad. Sci. 254, 69–71 (1962)

    MathSciNet  Google Scholar 

  19. A. Majumdar, Microscale heat conduction in dielectric thin films. J. Heat Transfer 115, 7–16 (1993)

    Google Scholar 

  20. A.A. Joshi, A. Majumdar, Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys. 74, 31–39 (1993)

    Google Scholar 

  21. S. Volz, J.-B. Saulnier, M. Lallemand, B. Perrin, P. Depondt, M. Mareschal, Transient Fourier-law deviation by molecular dynamics in solid argon. Phys. Rev. B 54, 340–347 (1996)

    Google Scholar 

  22. J. Xu, X.W. Wang, Simulation of ballistic and non-Fourier thermal transport in ultra-fast laser heating. Phys. B 351, 213–226 (2004)

    Google Scholar 

  23. M. Chester, Second sound in solids. Phys. Rev. 131, 2013–2015 (1963)

    Google Scholar 

  24. M.E. Gurtin, A.C. Pipkin, A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    MathSciNet  MATH  Google Scholar 

  25. P.J. Antaki, Solution for non-Fourier dual phase lag heat conduction in a semi-infinite slab with surface heat flux. Int. J. Heat Mass Transfer 41, 2253–2258 (1998)

    MATH  Google Scholar 

  26. D.W. Tang, N. Araki, Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. Int. J. Heat Mass Transfer 42, 855–860 (1999)

    MATH  Google Scholar 

  27. D.Y. Tzou, K.S. Chiu, Temperature-dependent thermal lagging in ultrafast laser heating. Int. J. Heat Mass Transfer 44, 1725–1734 (2001)

    MATH  Google Scholar 

  28. L.Q. Wang, X.S. Zhou, X.H. Wei, Heat Conduction: Mathematical Models and Analytical Solutions (Springer-Verlag, Berlin, 2008)

    MATH  Google Scholar 

  29. W.J. Minkowycz, A. Haji-Sheikh, K. Vafai, On departure from local thermal equilibrium in porous media due to a rapid changing heat source: the Sparrow number. Int. J. Heat Mass Transfer 42, 3373–3385 (1999)

    MATH  Google Scholar 

  30. W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure. J. Heat Transfer 112, 555–560 (1990)

    Google Scholar 

  31. J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1951 (1959)

    MATH  Google Scholar 

  32. R. A. Guyer, J. A. Krumhansl, Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148, 766–778 (1966); Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Google Scholar 

  33. J. Shiomi, S. Maruyama, Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations. Phys. Rev. B 73, 205420 (2006)

    Google Scholar 

  34. D.H. Tsai, R.A. MacDonald, Molecular-dynamics study of second sound in a solid excited by a strong heat pulse. Phys. Rev. B 14, 4714–4723 (1976)

    Google Scholar 

  35. X.W. Wang, X. Xu, Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 73, 107–114 (2001)

    Google Scholar 

  36. X.W. Wang, Thermal and thermomechanical phenomena in picosecond laser copper interaction. J. Heat Transfer 126, 355–364 (2004)

    Google Scholar 

  37. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974)

    Google Scholar 

  38. J.G. Fujimoto, J.M. Liu, E.P. Ippen, N. Bloembergen, Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures. Phys. Rev. Lett. 53, 1837–1840 (1984)

    Google Scholar 

  39. S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films. Phys. Rev. Lett. 59, 1962–1965 (1987)

    Google Scholar 

  40. T.Q. Qiu, C.L. Tien, Short-pulse laser heating on metals. Int. J. Heat Mass Transfer 35, 719–726 (1992)

    Google Scholar 

  41. T.Q. Qiu, C.L. Tien, Size effect on nonequilibrium laser heating of metal films. J. Heat Transfer 115, 842–847 (1993)

    Google Scholar 

  42. T.Q. Qiu, T. Juhasz, C. Suarez, W.E. Bron, C.L. Tien, Femtosecond laser heating of multi-layer metals—II. Experiments. Int. J. Heat Mass Transfer 37, 2799–2808 (1994)

    Google Scholar 

  43. J.L. Hostetler, A.N. Smith, D.M. Czajkowsky, P.M. Norris, Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al. Appl. Opt. 38, 3614–3620 (1999)

    Google Scholar 

  44. S. Link, C. Burda, Z.L. Wang, M.A. El-Sayed, Electron dynamics in gold and gold-silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron-phonon relaxation. J. Chem. Phys. 111, 1255–1264 (1999)

    Google Scholar 

  45. A.N. Smith, P.M. Norris, Influence of intraband transition on the electron thermoreflectance response of metals. Appl. Phys. Lett. 78, 1240–1242 (2001)

    Google Scholar 

  46. R.J. Stevens, A.N. Smith, P.M. Norris, Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance techniques. J. Heat Transfer 127, 315–322 (2005)

    Google Scholar 

  47. D.G. Cahill, K.E. Goodson, A. Majumdar, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transfer 124, 223–241 (2002)

    Google Scholar 

  48. D.G. Cahill, W.K. Ford, K.E. Goodson et al., Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)

    Google Scholar 

  49. J. Zhu, D.W. Tang, W. Wang, J. Liu, K.W. Holub, R. Yang, Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. J. Appl. Phys. 108, 094315 (2010)

    Google Scholar 

  50. D.M. Riffe, X.Y. Wang, M.C. Downer et al., Femtosecond thermionic emission from metals in the space-charge-limited regime. J. Opt. Soc. Am. B 10, 1424–1435 (1993)

    Google Scholar 

  51. A.N. Smith, J.L. Hostetler, P.M. Norris, Nonequilibrium heating in metal films: An analytical and numerical analysis. Numer. Heat Transfer A 35, 859–874 (1999)

    Google Scholar 

  52. M. Li, S. Menon, J.P. Nibarger, G.N. Gibson, Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics. Phys. Rev. Lett. 82, 2394–2397 (1999)

    Google Scholar 

  53. L. Jiang, H.-L. Tsai, Energy transport and nanostructuring of dielectrics by femtosecond laser pulse trains. J. Heat Transfer 128, 926–933 (2006)

    Google Scholar 

  54. L. Jiang, H.-L. Tsai, Plasma modeling for ultrashort pulse laser ablation of dielectrics. J. Appl. Phys. 100, 023116 (2006)

    Google Scholar 

  55. Y. Ma, A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments. J. Appl. Phys. 116, 243505 (2014); ibid, Hotspot size-dependent thermal boundary conductance in nondiffusive heat conduction. J. Heat Transfer 137, 082401 (2015)

    Google Scholar 

  56. G. Chen, Ballistic-diffusion heat-conduction equations. Phys. Rev. Lett. 86, 2297–2300 (2001); ibid, Ballistic-diffusive equations for transient heat conduction from nano to macroscales. J. Heat Transfer 124, 320–328 (2002)

    Google Scholar 

  57. T. Klitsner, J.E. VanCleve, H.E. Fischer, R.O. Pohl, Phonon radiative heat transfer and surface scattering. Phys. Rev. B 38, 7576–7594 (1988)

    Google Scholar 

  58. R.B. Peterson, Direct simulation of phonon-mediated heat transfer in a Debye crystal. J. Heat Transfer 116, 815–822 (1994)

    Google Scholar 

  59. E.T. Swartz, P.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989)

    Google Scholar 

  60. W.A. Little, The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959)

    Google Scholar 

  61. G. Chen and C.L. Tien, “Thermal conductivity of quantum well structures,” J. Thermophys. Heat Transfer, 7, 311–318, 1993

    Google Scholar 

  62. G. Chen, Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transfer 119, 220–229 (1997)

    Google Scholar 

  63. G. Chen, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 14958–14973 (1998)

    Google Scholar 

  64. G. Chen, T. Zeng, Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale Thermophys. Eng. 5, 71–88 (2001)

    Google Scholar 

  65. T. Zeng, G. Chen, Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation. J. Heat Transfer 123, 340–347 (2001)

    Google Scholar 

  66. S. Sinha, K.E. Goodson, Review: multiscale thermal modeling in nanoelectronics. Int. J. Multiscale Comp. Eng. 3, 107–133 (2005)

    Google Scholar 

  67. R.A. Escobar, S.S. Ghai, M.S. Jhon, C.H. Amon, Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling. Int. J. Heat Mass Transfer 49, 97–107 (2006)

    MATH  Google Scholar 

  68. E.M. Sparrow, R.D. Cess, Radiation Heat Transfer, Augmented edn. (McGraw-Hill, New York, 1978)

    Google Scholar 

  69. M.F. Modest, Radiative Heat Transfer, 3rd edn. (Academic Press, New York, 2013)

    Google Scholar 

  70. T.J. Bright, Z.M. Zhang, Entropy generation in thin films evaluated from phonon radiative transport. J. Heat Transfer 132, 101301 (2010)

    Google Scholar 

  71. H.B.G. Casimir, Note on the conduction of heat in crystal. Physica 5, 495–500 (1938)

    Google Scholar 

  72. R.G. Deissler, Diffusion approximation for thermal radiation in gasses with jump boundary condition. J. Heat Transfer 86, 240–245 (1964)

    Google Scholar 

  73. A. Malhotra, K. Kothari, M. Maldovan, Cross-plane thermal conduction in superlattices: Impact of multiple length scales on phonon transport. J. Appl. Phys. 125, 044304 (2019)

    Google Scholar 

  74. K. Kothari, A. Malhotra, M. Maldovan, Cross-plane heat conduction in III–V semiconductor superlattices. J. Phys. Condens. Matter 31, 345301 (2019)

    Google Scholar 

  75. M.M. Yovanovich, Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans. Compon. Packag. Technol. 28, 182–206 (2005)

    Google Scholar 

  76. R.J. Stoner, H.J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373–16387 (1993)

    Google Scholar 

  77. R.S. Prasher and P.E. Phelan, “Review of thermal boundary resistance of high-temperature superconductors,” J. Supercond., 10, 473–484, 1997

    Google Scholar 

  78. P.E. Phelan, Application of diffuse mismatch theory to the prediction of thermal boundary resistance in thin-film high-Tc superconductors. J. Heat Transfer 120, 37–43 (1998)

    Google Scholar 

  79. L. De Bellis, P.E. Phelan, R.S. Prasher, Variations of acoustic and diffuse mismatch models in predicting thermal-boundary resistance. J. Thermophys. Heat Transfer 14, 144–150 (2000)

    Google Scholar 

  80. A. Majumdar, Effect of interfacial roughness on phonon radiative heat conduction. J. Heat Transfer 113, 797–805 (1991)

    Google Scholar 

  81. A. Majumdar, P. Reddy, Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004)

    Google Scholar 

  82. A. Giri, P.E. Hopkins, A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Func. Mater. 2019, 1903857 (2019)

    Google Scholar 

  83. S. Mazumdar, A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization. J. Heat Transfer 123, 749–759 (2001)

    Google Scholar 

  84. Q. Hao, G. Chen, M.-S. Jeng, Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores. J. Appl. Phys. 106, 114321 (2009)

    Google Scholar 

  85. J.-P.M. Péraud, C.D. Landon, N.G. Hadjiconstantinou, Monte Carlo methods for solving the Boltzmann transport equation. Annu. Rev. Heat Transfer 17, 205–265 (2014)

    Google Scholar 

  86. A. Nabovati, D.P. Sellan, C.H. Amon, On the lattice Boltzmann method for phonon transport. J. Comput. Phys. 230, 5864–5876 (2011)

    MathSciNet  MATH  Google Scholar 

  87. S.R. Phillpot, P.K. Schelling, P. Keblinski, Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl. Phys. Lett. 80, 2484–2486 (2002); ibid, Interfacial thermal conductivity: Insights from atomic level simulation. J. Mater. Sci. 40, 3143–3148 (2005)

    Google Scholar 

  88. C.-J. Twu, J.-R. Ho, Molecular-dynamics study of energy flow and the Kapitza conductance across an interface with imperfection formed by two dielectric thin films. Phys. Rev. B 67, 205422 (2003)

    Google Scholar 

  89. H. Zhong, J.R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74, 125403 (2006)

    Google Scholar 

  90. R.J. Stevens, L.V. Zhigilei, P.M. Norris, Effects of temperature and disorder on thermal boundary conductance at solid-solid interfaces: non-equilibrium molecular dynamics simulations. Int. J. Heat Mass Transfer 50, 3977–3989 (2007)

    MATH  Google Scholar 

  91. E.S. Landry, A.J.H. McGaughey, Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations. Phys. Rev. B 80, 165304 (2009)

    Google Scholar 

  92. Y. Chalopin, K. Esfarjani, A. Henry, S. Volz, G. Chen, Thermal interface conductance in Si/Ge superlattices by equilibrium molecular dynamics. Phys. Rev. B 85, 195302 (2012)

    Google Scholar 

  93. S. Merabia, K. Termentzidis, Thermal conductance at the interface between crystals using equilibrium and nonequilibrium molecular dynamics. Phys. Rev. B 86, 094303 (2012)

    Google Scholar 

  94. Z. Liang, M. Hu, Tutorial: Determination of thermal boundary resistance by molecular dynamics simulations. J. Appl. Phys. 123, 191101 (2018)

    Google Scholar 

  95. F. VanGessel, J. Peng, P.W. Chung, A review of computational phononics: the bulk, interfaces, and surfaces. J. Mater. Sci. 53, 5641–5683 (2018)

    Google Scholar 

  96. S. Datta, Nanoscale device modeling: the Green’s function method. Superlattices Microstruct. 28, 253–278 (2000)

    Google Scholar 

  97. N. Mingo, L. Yang, Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003)

    Google Scholar 

  98. W. Zhang, T.S. Fisher, N. Mingo, Simulation of interfacial phonon transport in Si–Ge heterostructures using an atomistic Green’s function method. J. Heat Transfer 129, 483–491 (2007); ibid, The atomistic Green’s function method: an efficient simulation approach for nanoscale phonon transport. Numerical Heat Transfer B 51, 333–349 (2007)

    Google Scholar 

  99. S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Kumar, T.S. Fisher, The atomistic Green’s function method for interfacial phonon transport. Annu. Rev. Heat Transfer 17, 89–145 (2014)

    Google Scholar 

  100. A. Ozpineci, S. Ciraci, Quantum effects of thermal conductance through atomic chains. Phys. Rev. B 63, 125415 (2001)

    Google Scholar 

  101. Z.-Y. Ong, G. Zhang, Efficient approach for modeling phonon transmission probability in nanoscale interfacial thermal transport. Phys. Rev. B 91, 174302 (2015)

    Google Scholar 

  102. L. Yang, B. Latour, A.J. Minnich, Phonon transmission at crystalline-amorphous interfaces studied using mode-resolved atomistic Green’s functions. Phys. Rev. B 97, 205306 (2018)

    Google Scholar 

  103. D.A. Young, H.J. Maris, Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. Phys. Rev. B 40, 3685–3693 (1989)

    Google Scholar 

  104. H. Zhao, J.B. Freund, Lattice-dynamical calculation of phonon scattering at ideal Si–Ge interfaces. J. Appl. Phys. 97, 024903 (2005)

    Google Scholar 

  105. S. Sadasivam, N. Ye, J.P. Feser, J. Charles, K. Miao, T. Kubis, T.S. Fisher, Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green’s function transport simulations. Phys. Rev. B 95, 085310 (2017)

    Google Scholar 

  106. Z. Tian, K. Esfarjani, G. Chen, Green’s function studies of phonon transport across Si/Ge superlattices. Phys. Rev. B 89, 235307 (2014)

    Google Scholar 

  107. Z. Yan, L. Chen, M. Yoon, S. Kumar, Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures. Nanoscale 8, 4037 (2016)

    Google Scholar 

  108. J. Lai, A. Majumdar, Concurrent thermal and electrical modeling of sub-micrometer silicon devices. J. Appl. Phys. 79, 7353–7361 (1996)

    Google Scholar 

  109. P.G. Sverdrup, Y.S. Ju, K.E. Goodson, Sub-continuum simulation of heat conduction in silicon-on-insulator transistors. J. Heat Transfer 123, 130–137 (2001)

    Google Scholar 

  110. S. Sinha, E. Pop, R.W. Dutton, K.E. Goodson, Non-equilibrium phonon distribution in sub-100 nm silicon transistors. J. Heat Transfer 128, 638–647 (2006)

    Google Scholar 

  111. C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millán, V.S. Amaral, F. Palacio, L.D. Carlos, Thermometry at the nanoscale. Nanoscale 4, 4799–4829 (2012)

    Google Scholar 

  112. X.W. Wang, Experimental Micro/Nanoscale Thermal Transport (Wiley, New York, 2012)

    Google Scholar 

  113. A.J. McNamara, Y. Joshi, Z.M. Zhang, Characterization of nanostructured thermal interface materials—a review. Int. J. Thermal Sci. 62, 2–11 (2012)

    Google Scholar 

  114. G. Chen, Probing nanoscale heat transfer phenomena. Annu. Rev. Heat Transfer 16, 1–8 (2013)

    Google Scholar 

  115. D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, Measurement techniques for thermal conductivity and interfacial thermal conductance of bulk and thin film materials. J. Electron. Package 138, 040802 (2016)

    Google Scholar 

  116. Z.M. Zhang, Surface temperature measurement using optical techniques. Annu. Rev. Heat Transfer 11, 351–411 (2000)

    Google Scholar 

  117. B. Abad, D.-A. Borca-Tasciuc, M.S. Martin-Gonzalez, Non-contact methods for thermal properties measurement. Renew. Sustain. Energy Rev. 76, 1348–1370 (2017)

    Google Scholar 

  118. A.C. Jones, B.T. O’Callahan, H.U. Yang, M.B. Raschke, The thermal near-field: coherence, spectroscopy, heat-transfer, and optical forces. Prog. Sur. Sci. 88, 349–392 (2013)

    Google Scholar 

  119. K.E. Goodson, Y.S. Ju, Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29, 261–293 (1999)

    Google Scholar 

  120. K. Park, G.L.W. Cross, Z.M. Zhang, W.P. King, Experimental investigation on the heat transfer between a heated microcantilever and a substrate. J. Heat Transfer 130, 102401 (2008)

    Google Scholar 

  121. D. G. Cahill and R. O. Pohl, “Thermal conductivity of amorphous solids above the plateau,” Phys. Rev. B, 35, 4067–4073, 1987

    Google Scholar 

  122. D.G. Cahill, H.E. Fischer, T. Klitsner, E.T. Swartz, R.O. Pohl, Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Technol. A 7, 1259–1266 (1989)

    Google Scholar 

  123. D.G. Cahill, Thermal conductivity measurement from 30 K to 750 K: the 3-omega method. Rev. Sci. Instrum. 61, 802–808 (1990)

    Google Scholar 

  124. C. Dames, Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods. Annu. Rev. Heat Transfer 16, 7–49 (2013)

    Google Scholar 

  125. S. Kommandur, S.K. Yee, A suspended 3-omega technique to measure the anisotropic thermal conductivity of semiconducting polymers. Rev. Sci. Instrum. 89, 114905 (2018)

    Google Scholar 

  126. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar, Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transfer 125, 881–888 (2003)

    Google Scholar 

  127. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)

    Google Scholar 

  128. C. Yu, L. Shi, Z. Yao, D. Li, A. Majumdar, Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett. 5, 1842–1846 (2005)

    Google Scholar 

  129. A. Mavrokefalos, M.T. Pettes, F. Zhou, L. Shi, Four-probe measurements of the in-plane thermoelectric properties of nanofilms. Rev. Sci. Instrum. 78, 034901 (2007)

    Google Scholar 

  130. A. Weathers, L. Shi, Thermal transport measurement techniques for nanowires and nanotubes. Annu. Rev. Heat Transfer 16, 101–134 (2013)

    Google Scholar 

  131. M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95, 065502 (2005)

    Google Scholar 

  132. J. Kim, E. Ou, D.P. Sellan, L. Shi, A four-probe thermal transport measurement method for nanostructures. Rev. Sci. Instrum. 86, 044901 (2015)

    Google Scholar 

  133. J. Kim, D.A. Evans, D.P. Sellan, O.M. Williams, E. Ou, A.H. Cowley, L. Shi, Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure. Appl. Phys. Lett. 108, 201905 (2016)

    Google Scholar 

  134. A. Majumdar, Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999)

    Google Scholar 

  135. A. Majumdar, J. P. Carrejo, J. Lai, Thermal imaging using the atomic force microscope. Appl. Phys. Lett. 62, 2501–2503 (1993)

    Google Scholar 

  136. A. Majumdar, J. Lai, M. Chandrachood, O. Nakabeppu, Y. Wu, J. Shi, Thermal imaging by atomic force microscopy using thermocouple cantilever probes. Rev. Sci. Instrum. 66, 3584–3592 (1995)

    Google Scholar 

  137. C.C. Williams, H.K. Wickramasinghe, Scanning thermal profiler. Appl. Phys. Lett. 49, 1587–1589 (1986)

    Google Scholar 

  138. A. Majumdar, J. Varesi, Nanoscale temperature distribution measured by scanning Joule expansion microscopy. J. Heat Transfer 120, 297–305 (1998)

    Google Scholar 

  139. S.P. Gurrum, W.P. King, Y.K. Joshi, K. Ramakrishna, Size effect on the thermal conductivity of thin metallic films investigated by scanning Joule expansion microscopy. J. Heat Transfer 130, 082403 (2008)

    Google Scholar 

  140. K.L. Grosse, M.-H. Bae, F. Lian, E. Pop, W.P. King, Nanoscale Joule heating, Peltier cooling and current crowding at graphene-metal contacts. Nat. Nanotech. 6, 287–290 (2011)

    Google Scholar 

  141. T. Borca-Tasciuc, Scanning probe methods for thermal and thermoelectric property measurements. Annu. Rev. Heat Transfer 16, 211–258 (2013)

    Google Scholar 

  142. S. Gomès, A. Assy, P.-O. Chapuis, Scanning thermal microscopy: a review. Phys. Status Solidi A 212, 477–494 (2015)

    Google Scholar 

  143. K. Kim, J. Chung, G. Hwang, O. Kwon, J.S. Lee, Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air. ACS Nano 11, 8700–8709 (2011)

    Google Scholar 

  144. H.F. Hamann, Y.C. Martin, H.K. Wickramasinghe, Thermally assisted recording beyond traditional limits. Appl. Phys. Lett. 84, 810–812 (2004)

    Google Scholar 

  145. W.P. King, T.W. Kenny, K.E. Goodson et al., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001)

    Google Scholar 

  146. J. Lee, T. Beechem, T. L. Wright, B. A. Nelson, S. Graham, W. P. King, Electrical, thermal, and, mechanical characterization of silicon microcantilever heaters. J. Microelectromech. Syst. 15, 1644 (2007)

    Google Scholar 

  147. J. Lee, T.L. Wright, M.R. Abel et al., Thermal conduction from microcantilever heaters in partial vacuum. J. Appl. Phys. 101, 014906 (2007)

    Google Scholar 

  148. K. Park, J. Lee, Z.M. Zhang, W.P. King, Frequency-dependent electrical and thermal response of heated atomic force microscope cantilevers. J. Microelectromech. Syst. 16, 213–222 (2007)

    Google Scholar 

  149. K. Park, A. Marchenkov, Z.M. Zhang, W.P. King, Low temperature characterization of heated microcantilevers. J. Appl. Phys. 101, 094504 (2007)

    Google Scholar 

  150. W.P. King, B. Bhatia, J.R. Felts, H.J. Kim, B. Kwon, B. Lee, S. Somnath, M. Rosenberger, Heated atomic force microscope cantilevers and their applications. Annu. Rev. Heat Transfer 16, 287–326 (2013)

    Google Scholar 

  151. A.J. Schmidt, X. Chen, G. Chen, Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79, 114802 (2008)

    Google Scholar 

  152. A.J. Minnich, Measuring phonon mean free paths using thermal conductivity spectroscopy. Annu. Rev. Heat Transfer 16, 183–210 (2013)

    Google Scholar 

  153. J. Zhu, H. Park, J.-Y. Chen et al., Revealing the origins of 3D anisotropic thermal conductivities of black phosphorus. Adv. Electron. Mater. 2, 1600040 (2016)

    Google Scholar 

  154. P. Jiang, X. Qian, R. Yang, Tutorial: time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. J. Appl. Phys. 124, 161103 (2018)

    Google Scholar 

  155. Z. Cheng, T. Bougher, T. Bai et al., Probing growth-induced anisotropic thermal transport in high-quality CVD diamond membranes by multifrequency and multiple-spot-size time-domain thermoreflectance. ACS Appl. Mater. Interfaces. 10, 4808–4815 (2018)

    Google Scholar 

  156. S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, J.-C. Zhao, Thermal conductivity imaging at micrometrescale resolution for combinatorial studies of materials. Nat. Mater. 3, 298–301 (2004)

    Google Scholar 

  157. D.G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004)

    Google Scholar 

  158. J. Jeong, X. Meng, A. K. Rockwell et al., Picosecond transient thermoreflectance for thermal conductivity characterization. Nanoscale Microscale Thermophys. Eng. 23, 211−221 (2019)

    Google Scholar 

  159. P.M. Norris, A.P. Caffrey, R.J. Stevens, J.M. Klopf, J.T. McLeskey, A.N. Smith, Femtosecond pump–probe nondestructive examination of materials. Rev. Sci. Instrum. 74, 400–406 (2003)

    Google Scholar 

  160. K.E. Goodson, M. Asheghi, Near-field optical thermometry. Microscale Thermophys. Eng. 1, 225–235 (1997)

    Google Scholar 

  161. D. Seto, R. Nikka, S. Nishio, Y. Taguchi, T. Saiki, Y. Nagasaka, Nanoscale optical thermometry using a time-correlated single-photon counting in an illumination-collection mode. Appl. Phys. Lett. 110, 033109 (2017)

    Google Scholar 

  162. M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, H.C. Kapteyn, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nat. Mater. 9, 26–30 (2010)

    Google Scholar 

  163. T. Favaloro, J.-H. Bahk, A. Shakouri, Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum. 86, 024903 (2015)

    Google Scholar 

  164. C. Wei, X. Zheng, D.G. Cahill, J.-C. Zhao, Invited article: Micron resolution spatially resolved measurement of heat capacity using dual-frequency time-domain thermoreflectance. Rev. Sci. Instrum. 84, 071301 (2013)

    Google Scholar 

  165. P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson III, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning. Nano Lett. 11, 107–112 (2011)

    Google Scholar 

  166. M.R. Wagner, B. Graczykowski, J.S. Reparaz et al., Two-dimensional photonic crystals: Disorder matters. Nano Lett. 16, 5661–5668 (2016)

    Google Scholar 

  167. X. Wang, T. Mori, I. Kuzmych-Ianchuk, Y. Michiue, K. Yubuta, T. Shishido, Y. Grin, S. Okada, D.G. Cahill, Thermal conductivity of layered borides: The effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2. APL Mater. 2, 046113 (2014)

    Google Scholar 

  168. J. Liu, G.-M. Choi, D.G. Cahill, Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014)

    Google Scholar 

  169. A. J. Schmidt, R. Cheaito, M. Chiesa, A frequency-domain thermoreflectance method for the characterization of thermal properties. Rev. Sci. Instrum. 80, 094901 (2009); ibid, Characterization of thin metal films via frequency-domain thermoreflectance. J. Appl. Phys. 107, 024908 (2010)

    Google Scholar 

  170. K.T. Regner, D.P. Sellan, Z. Su, C.H. Amon, A.J.H. McGaughey, J.A. Malen, Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat. Commun. 4, 1640 (2013)

    Google Scholar 

  171. D. Rodin, S.K. Yee, Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance. Rev. Sci. Instrum. 88, 014902 (2017)

    Google Scholar 

  172. J. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich, T. Kehoe, C. M. Sotomayor Torres, G. Chen, K. A. Nelson, Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013)

    Google Scholar 

  173. J. Cuffe, J.K. Eliason, A.A. Maznev et al., Reconstructing phonon mean-free-path contributions to thermal conductivity using nanoscale membranes. Phys. Rev. B 91, 245423 (2015)

    Google Scholar 

  174. A. Vega-Flick, R.A. Duncan, J.K. Eliason et al., Thermal transport in suspended silicon membranes measured by laser-induced transient gratings. AIP Adv. 6, 120903 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuomin M. Zhang .

Problems

Problems

  1. 7.1.

    What are the characteristic lengths for heat conduction along a thin film? Why is local equilibrium a good assumption in this case, even though the film thickness is less than the mean free path of heat carriers? Why does the thermal conductivity depend on the thickness of the film?

  2. 7.2.

    Why do we say that Fourier’s law is a fundamental physical law, like Newton’s laws in mechanics, but Cattaneo’s equation is not? Comment on the paradox of infinite speed of heat diffusion by considering the feasibility of exciting the surface temperature or depositing a heat flux to the surface instantaneously.

  3. 7.3.

    Consider a 1D semi-infinite medium, initially at uniform temperature \(T_{i}\), where the surface temperature is suddenly changed to a constant temperature, \(T(0,t) = T_{\text{s}}\). The analytical solution of the heat diffusion equation gives \(\theta (x,t) = \frac{{T(x,t) - T_{\text{i}} }}{{T_{\text{s}} - T_{\text{i}} }}\) \(= {\text{erfc}}\left( {\frac{x}{{2\sqrt {\alpha t} }}} \right)\). For silicon at various temperatures, use the properties given in Example 5.6 to estimate how long it will take for a given location to gain a temperature rise that is 10−12, or one part per trillion of the maximum temperature difference. Estimate the average thermal diffusion speed in terms of x and \(T_{\text{i}}\). Hint: \({\text{erfc}}(5.042) = 1.00 \times 10^{ - 12}\).

  4. 7.4.

    Repeat Problem 7.3, using copper instead of silicon as the material, based on the properties given in Example 5.5. Discuss why the average thermal diffusion speed is different under different boundary conditions, i.e., constant heat flux and constant temperature. From an engineering point of view, do you think heat diffusion is a fast or slow process? Why?

  5. 7.5.
    1. (a)

      Derive Eq. (7.4), the hyperbolic heat equation from Cattaneo’s equation

    2. (b)

      Derive Eq. (7.14), the lagging heat equation, based on the dual-phase-lag model.

  6. 7.6.

    Take GaAs as an example. How would you compare the speed of sound with the average thermal diffusion speed, at different temperatures and length scales? This problem requires some literature search on the properties.

  7. 7.7.

    Assume the hyperbolic heat equation would work for transient heat transfer in glass (Pyrex), at room temperature. Given \(\kappa = 1.4{\text{ W/m}} \, {\text{K}}\), \(\rho = 2500{\text{ kg/m}}^{ 3}\), \(c_\text{{p}} = 835{\text{ J/kg}} \, {\text{K}}\), and \(v_{\text{a}} = 5640{\text{ m/s}}\).

    1. (a)

      At what speed would the temperature wave propagate?

    2. (b)

      For an excimer laser with a pulse width \(t_{\text{p}} = 10{\text{ ns}}\), 0.1 ns after the pulse starts, could the hyperbolic equation be approximated by the parabolic equation?

    3. (c)

      Suppose we have an instrument available to probe the timescale below \(\tau_{\text{q}}\), will the hyperbolic heat equation be able to describe the observation?

  8. 7.8.

    Derive Eq. (7.13b) from Eq. (7.13a). Discuss the conditions for these equations to be reduced to Fourier’s law or Cattaneo’s equation.

  9. 7.9.

    Show that Eq. (7.17) satisfies Eq. (7.16). Discuss the conditions for Eq. (7.17) to represent Fourier’s law or Cattaneo’s equation.

  10. 7.10.

    Derive Eqs. (7.18a), (7.18b), and (7.18c).

  11. 7.11.

    Derive Eqs. (7.27a) and (7.27b). Calculate \(\tau\), \(\tau_{\text{q}}\), and \(\tau_{\text{T}}\) of copper, for \(T_{\text{e}}\) = 300, 1000, and 5000 K, assuming the lattice temperature \(T_{\text{s}} = 300{\text{ K}}\).

  12. 7.12.

    Calculate the electron–phonon coupling constant G for aluminum, copper, gold, and silver, near room temperature. Discuss the dependence of κ and G upon the electron and lattice temperatures \(T_{\text{e}}\) and \(T_{\text{s}}\).

  13. 7.13.

    At \(T_{\text{e}}\) = 1000, 3000, and 6000 K, estimate the energy transfer by thermionic emission from the copper surface, assuming that the electrons obey the equilibrium distribution function at \(T_{\text{e}}\).

  14. 7.14.

    Based on Example 7.3, evaluate the heat flux in a thin silicon film. How thin must it be in order for it to be considered as in the radiative thin limit? Calculate the medium temperature T. Plot the left-hand side and the right-hand side of Eq. (7.43). Furthermore, assuming Eq. (7.43) to be true for each frequency, find a frequency-dependent temperature \(T(\omega )\) of the medium. At what frequency does \(T(\omega ) = T\)? Is there any physical significance of \(T(\omega )\)?

  15. 7.15.

    Derive Eq. (7.53), using Eqs. (7.38), (7.49a), (7.49b), and (7.50).

  16. 7.16.

    In principle, one should be able to study nonequilibrium electrical and thermal conduction in the direction perpendicular to the plane and use the BTE to determine the effective conductivities. This could be a team project, for a few students, to formulate the necessary equations. As an individual assignment, describe how to set up the boundary conditions, as well as the steps you plan to follow, without actually deriving the equations.

  17. 7.17.

    For a diamond type IIa film, \(v_{l} = 17,500{\text{ m/s}}\), \(v_{t} = 12,800{\text{ m/s}}\), and \(\kappa = 3,300{\text{ W/m}} \, {\text{K}}\), near 300 K. Assume that the boundaries can be modeled as blackbodies for phonons. For boundary temperatures \(T_{1} = 350{\text{ K}}\) and \(T_{2} = 250{\text{ K}}\), calculate and plot the heat flux \(q_{x}^{{\prime \prime }}\) and the effective thermal conductivity \(\kappa_{\text{eff}}\) across the film of thickness L, varying from 0.05 to 50 μm.

  18. 7.18.

    Calculate the TBR between high-temperature superconductor YBa2Cu3O7-δ and MgO substrate, at an average temperature between 10 and 90 K, using both the AMM and the DMM without considering the electronic effect. The following parameters are given for YBa2Cu3O7-δ: \(v_{l} = 4780{\text{ m/s}}\), \(v_{t} = 3010{\text{ m/s}}\), \(\rho = 6338{\text{ kg/m}}^{ - 3}\), and \(\Theta_{\text{D}} = 450{\text{ K}}\); and for MgO: \(v_{l} = 9710{\text{ m/s}}\), \(v_{t} = 6050{\text{ m/s}}\), \(\rho = 3576{\text{ kg/m}}^{ - 3}\), and \(\Theta_{\text{D}} = 950{\text{ K}}\).

  19. 7.19.

    Evaluate the effective thermal conductivity near room temperature of a GaAs/AlAs superlattice, with a total thickness of 800 nm, using the DMM to compute the transmission coefficient. Assume the end surfaces are blackbodies to phonons; consider that (a) each layer is 4 nm thick and (b) each layer is 40 nm thick. The following parameters are given, considering phonon dispersion on thermal conductivity, for GaAs: \(C = 880{\text{ kJ/m}}^{ 3} \, {\text{K}}\), \(v_{\text{g}} = 1024{\text{ m/s}}\), and \(\Lambda = 145{\text{ nm}}\); and for AlAs: \(C = 880{\text{ kJ/m}}^{ 3} \, {\text{K}}\), \(v_{\text{g}} = 1246{\text{ m/s}}\), and \(\Lambda = 236\,{\text{nm}}\). How is the result compared with a single layer of either GaAs or AlAs?

  20. 7.20.

    Evaluate the effective thermal conductivity near room temperature of a Si/Ge superlattice, with a total thickness of 1000 nm, using the DMM to compute the transmission coefficient. Assume the end surfaces are blackbodies to phonons; consider that (a) each layer is 5 nm thick and (b) each layer is 50 nm thick. The following parameters are given, considering phonon dispersion on thermal conductivity, for Si: \(C = 930{\text{ kJ/m}}^{ 3} \, {\text{K}}\), \(v_{\text{g}} = 1804\,{\text{m/s}}\), and \(\Lambda = 260\,{\text{nm}}\); and for Ge: \(C = 870{\text{ kJ/m}}^{ 3} \, {\text{K}}\), \(v_{\text{g}} = 1042\,{\text{m/s}}\), and \(\Lambda = 199\,{\text{nm}}\). How is the result compared with a single layer of either Si or Ge?

  21. 7.21.

    Make a comparison of the different methods for measuring the thermal conductivity of a thin film.

  22. 7.22.

    Suppose one wishes to measure the thermal conductivity of a graphene sheet of 10 μm × 10 μm, what method(s) would you recommend?

  23. 7.23.

    Suppose one wishes to measure the thermal conductivity of a superlattice Si/Ge nanowire of length 50 μm and diameter 3 nm, what method would you suggest?

  24. 7.24.

    What is the mechanism of transient thermal grating? What properties can be measured by the TTG method?

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z.M. (2020). Nonequilibrium Energy Transfer in Nanostructures. In: Nano/Microscale Heat Transfer. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-45039-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45039-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45038-0

  • Online ISBN: 978-3-030-45039-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics