Skip to main content

Introduction

  • Chapter
  • First Online:
Nano/Microscale Heat Transfer

Part of the book series: Mechanical Engineering Series ((MES))

  • 2938 Accesses

Abstract

Improvement of performance and shrinkage of device sizes in microelectronics have been major driving forces for scientific and economic progress over the past 40 years. Developments in semiconductor processing and surface sciences have allowed precise control over critical dimensions with desirable properties for solid-state devices. In the past 30 years, there have been tremendous developments in micro- and nanoelectromechanical systems (MEMS and NEMS), microfluidics and nanofluidics, quantum structures and devices, photonics and optoelectronics, nanomaterials for molecular sensing and biomedical diagnosis, and scanning probe microscopy for measurement and manipulation at the molecular and atomic levels. This book was motivated by the need to understand the thermal phenomena and heat transfer processes in micro/nanosystems and at very short time scales for solving problems occurring in contemporary and future technologies. Since the first publication in 2007, many universities have offered micro/nanoscale heat transfer courses and used it as either the textbook or major reference. Significant progress has been made in the last decade and this second edition reflects a major update. This chapter gives an introduction of the thermal issues associated with nanotechnology and an outline of the rest of the chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.P. Poole Jr., F.J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003)

    Google Scholar 

  2. E.L. Wolf, Nanophysics and Nanotechnology—An Introduction to Modern Concepts in Nanoscience (Wiley-VCH, Weinheim, Germany, 2004)

    Google Scholar 

  3. C.L. Tien, A. Majumdar, F.M. Gerner (eds.), Microscale Energy Transport (Taylor & Francis, Washington, DC, 1998)

    Google Scholar 

  4. G. Chen, Nanoscale Energy Transport and Conversion (Oxford University Press, New York, 2005)

    Google Scholar 

  5. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656, July & October 1948, http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

  6. G.E. Moore, Cramming more components onto integrated circuits. Electronics 38(8), 114–117 (1965)

    Google Scholar 

  7. G.E. Moore, Progress in digital integrated electronics. IEEE Tech. Digest (International Electron Devices Meeting), 11–13 (1975), www.intel.com/technology/mooreslaw

  8. M. Mitchell Wardrop, More than Moore. Nature 530, 144–147 (2016)

    Google Scholar 

  9. Z.M. Zhang, B.K. Tsai, G. Machin, Radiometric Temperature Measurements: I. Fundamentals; II. Applications (Academic Press/Elsevier, Amsterdam, 2009)

    Google Scholar 

  10. C.-H. Fan, J.P. Longtin, Radiative energy transport at the spatial and temporal micro/nano scales. In: Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures, M. Faghri, B. Sunden (eds.) (WIT Press, Southampton, UK, 2003), pp. 225–275

    Google Scholar 

  11. W. Denk, J.H. Stricker, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Google Scholar 

  12. T. Yu, C.K. Ober, S.M. Kuebler, W. Zhou, S.R. Marder, J.W. Perry, Chemically-amplified positive resist system for two-photon three-dimensional lithography. Adv. Mat. 15, 517–521 (2003)

    Google Scholar 

  13. S.M. Kuebler, K.L. Braun, W. Zhou et al., Design and application of high-sensitivity two-photon initiators for three-dimensional microfabrication. J. Photochem. Photobio. A: Chemistry 158, 163–170 (2003)

    Google Scholar 

  14. M.F. Modest, H. Abakians, Heat-conduction in a moving semi-infinite solid subject to pulsed laser irradiation. J. Heat Transfer 108, 597–601 (1986)

    Google Scholar 

  15. M.F. Modest, H. Abakians, Evaporative cutting of a semi-infinite body with a moving cw laser. J. Heat Transfer 108, 602–607 (1986)

    Google Scholar 

  16. C.L. Tien, T.Q. Qiu, P.M. Norris, Microscale thermal phenomena in contemporary technology. Thermal Sci. Eng. 2, 1–11 (1994)

    Google Scholar 

  17. R.J. Stoner, H.J. Maris, Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. Phys. Rev. B 48, 16373–16387 (1993)

    Google Scholar 

  18. W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, D.S. Katzer, Thermal-conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59, 8105–8113 (1999)

    Google Scholar 

  19. P.M. Norris, A.P. Caffrey, R. Stevens, J.M. Klopf, J.T. McLeskey, A.N. Smith, Femtosecond pump-probe nondestructive evaluation of materials. Rev. Sci. Instrum. 74, 400–406 (2003)

    Google Scholar 

  20. R.J. Stevens, A.N. Smith, P.M. Norris, Measurement of thermal boundary conductance of a series of metal-dielectric interfaces by the transient thermoreflectance techniques. J. Heat Transfer 127, 315–322 (2005)

    Google Scholar 

  21. O. Manasreh, Semiconductor Heterojunctions and Nanostructures (McGraw-Hill, New York, 2005)

    Google Scholar 

  22. G. Chen, Heat transfer in micro- and nanoscale photonic devices. Annu. Rev. Heat Transfer 7, 1–18 (1996)

    Google Scholar 

  23. Y. Jaluria, Thermal processing of materials: From basic research to engineering. J. Heat Transfer 125, 957–979 (2003)

    Google Scholar 

  24. X. Cheng, Y. Jaluria, Optimization of a thermal manufacturing process: drawing of optical fiber. Intl. J. Heat Mass Transfer 48, 3560–3573 (2005)

    MATH  Google Scholar 

  25. C. Chen, Y. Jaluria, Modeling of radiation heat transfer in the drawing of an optical fiber with multi-layer structure. J. Heat Transfer 129, 342–352 (2007)

    Google Scholar 

  26. Z.M. Zhang, S. Maruyama, A. Sakurai, M.P. Menguç, Special issue on nano- and micro-scale radiative transfer. J. Quant. Spectrosc. Radiat. Transfer 132, 1–2 (2014)

    Google Scholar 

  27. Z.M. Zhang, L.-H. Liu, Q.Z. Zhu, M.P. Menguç, Special issue on the second international workshop on micro-nano thermal radiation. J. Quant. Spectrosc. Radiat. Transfer 158, 1–2 (2015)

    Google Scholar 

  28. B.J. Lee, Y. Shuai, M. Francoeur, M.P. Mengüç, Special issue on the third international workshop on nano-micro thermal radiation. J. Quant. Spectrosc. Radiat. Transfer 237, 106592 (2019)

    Google Scholar 

  29. K. Kim, B. Song, V. Fernández-Hurtado et al., Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015)

    Google Scholar 

  30. M. Lim, J. Song, S.S. Lee, B.J. Lee, Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018)

    Google Scholar 

  31. J. DeSutter, L. Tang, M. Francoeur, A near-field radiative heat transfer device. Nat. Nanotech. 14, 751–755 (2019)

    Google Scholar 

  32. R.P. Feynman, There’s plenty of room at the bottom. J. Microelectromechanical Syst. 1, 60–66 (1992)

    Google Scholar 

  33. R.P. Feynman, Infinitesimal machinery. J. Microelectromechanical Syst. 2, 4–14 (1993), www.zyvex.com/nanotech/feynman.html

  34. M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC Press, Boca Raton, FL, 2002)

    Google Scholar 

  35. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    Google Scholar 

  36. E.O. Sunden, T.L. Wright, J. Lee, W.P. King, S. Graham, Room-temperature chemical vapor deposition and mass detection on a heated atomic force microscope cantilever. Appl. Phys. Lett. 88, 033107 (2006)

    Google Scholar 

  37. K. Hirahara, K. Suenaga, S. Bandow, et al., One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85, 5384 (2000). Also see Phys. Rev. Focus, 19 December 2000, http://focus.aps.org/story/v6/st27

  38. P.X. Gao, Y. Ding, W.J. Mai, W.L. Hughes, C.S. Lao, Z.L. Wang, Conversion of zinc oxide nanobelt into superlattice-structured nanohelices. Science 309, 1700–1704 (2005)

    Google Scholar 

  39. X.Y. Kong, Y. Ding, R. Yang, Z.L. Wang, Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 309, 1348–1351 (2004)

    Google Scholar 

  40. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Google Scholar 

  41. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based material: past, present and future. Prog. Mater Sci. 56, 1178–1271 (2011)

    Google Scholar 

  42. E. Pop, V. Varshney, A.K. Roy, Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)

    Google Scholar 

  43. F.H. Koppens, D.E. Chang, F.J. Garcia de Abajo, Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011)

    Google Scholar 

  44. D.N. Basov, M.M. Fogler, A. Lanzara, F. Wang, Y. Zhang, Colloquium: graphene spectroscopy. Rev. Mod. Phys. 86, 959–994 (2014)

    Google Scholar 

  45. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)

    Google Scholar 

  46. C. Tan, X. Cao, X.J. Wu et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017)

    Google Scholar 

  47. C. Shao, X. Yu, N. Yang, Y. Yue, H. Bao, A review of thermal transport in low- dimensional materials under external perturbation: effect of strain, substrate, and clustering. Nanoscale Microscale Thermophys. Eng. 21, 201–236 (2017)

    Google Scholar 

  48. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu, Graphene and related two-dimensional materials: structure-property relationships for electronics and optoelectronics. Appl. Phys. Rev. 4, 021306 (2017)

    Google Scholar 

  49. P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986)

    Google Scholar 

  50. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Google Scholar 

  51. Y. Yang, W. Liu, M. Asheghi, Thermal and electrical characterization of Cu/CoFe superlattices. Appl. Phys. Lett. 84, 3121–3123 (2004)

    Google Scholar 

  52. Y. Yang, R.M. White, M. Asheghi, Thermal characterization of Cu/CoFe multilayer for giant magnetoresistive (GMR) head applications. J. Heat Transfer 128, 113–120 (2006)

    Google Scholar 

  53. A. Datta, X. Xu, Infrared near-field transducer for heat-assisted magnetic recording. IEEE Trans. Magnet. 53, 3102105 (2017); ibid, Optical and thermal designs of near field transducer for heat assisted magnetic recording. Japan. J. Appl. Phys. 57, 09TA01 (2018)

    Google Scholar 

  54. G. Binnig, H. Rohrer, Scanning tunneling microscopy. Helv. Phys. Acta 55, 726–735 (1982)

    Google Scholar 

  55. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

    Google Scholar 

  56. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, 7 × 7 reconstruction on Si(111) resolved in real space. Phys. Rev. Lett. 50, 120–123 (1983)

    Google Scholar 

  57. M.F. Crommie, C.P. Lutz, D.M. Eigler, Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993)

    Google Scholar 

  58. G. Binnig, C.F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  59. C.C. Williams, H.K. Wickramasinghe, Scanning thermal profiler. Appl. Phys. Lett. 49, 1587–89 (1986)

    Google Scholar 

  60. J.M.R. Weaver, L.M. Walpita, H.K. Wickramasinghe, Optical absorption microscopy with nanometer resolution. Nature 342, 783–85 (1989)

    Google Scholar 

  61. M. Nonnenmacher, H.K. Wickramasinghe, Optical absorption spectroscopy by scanning force microscopy. Ultramicroscopy 42–44, 351–354 (1992)

    Google Scholar 

  62. A. Majumdar, Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999)

    Google Scholar 

  63. H.-K. Lyeo, A.A. Khajetoorians, L. Shi et al., Profiling the thermoelectric power of semiconductor junctions with nanometer resolution. Science 303, 818–820 (2004)

    Google Scholar 

  64. Z. Bian, A. Shakouri, L. Shi, H.-K. Lyeo, C.K. Shih, Three-dimensional modeling of nanoscale Seebeck measurement by scanning thermoelectric microscopy. Appl. Phys. Lett. 87, 053115 (2005)

    Google Scholar 

  65. H.J. Mamin, D. Rugar, Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 (1992)

    Google Scholar 

  66. H.J. Mamin, Thermal writing using a heated atomic force microscope tip. Appl. Phys. Lett. 69, 433–435 (1996)

    Google Scholar 

  67. G. Binnig, M. Despont, U. Drechsler et al., Ultrahigh-density atomic force microscopy data storage with erase capability. Appl. Phys. Lett. 74, 1329–1331 (1999)

    Google Scholar 

  68. W.P. King, T.W. Kenny, K.E. Goodson et al., Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 78, 1300–1302 (2001)

    Google Scholar 

  69. U. Dürig, G. Cross, M. Despont, et al. ‘Millipede’—an AFM data storage system at the frontier of nanotechnology. Tribology Lett. 9, 25–32 (2000)

    Google Scholar 

  70. P. Vettiger, G. Cross, M. Despont et al., The ‘millipede’—nanotechnology entering data storage. IEEE Trans. Nanotechnol. 1, 39–55 (2002)

    Google Scholar 

  71. P.E. Sheehan, L.J. Whitman, W.P. King, B.A. Nelson, Nanoscale deposition of solid inks via thermal dip pen nanolithography. Appl. Phys. Lett. 85, 1589–1591 (2004)

    Google Scholar 

  72. J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Kablinski, Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)

    Google Scholar 

  73. J. Buongiorno,  D.C. Venerus, N. Prabhat et al., A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106, 094312 (2009)

    Google Scholar 

  74. R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys. 113, 011301 (2013)

    Google Scholar 

  75. M.H. Esfe, M. Afrand, A review on fuel cell types and the application of nanofluid in their cooling. J. Therm. Anal. Calorim. 140, 1633–1654 (2020) https://doi.org/10.1007/s10973-019-08837-x

  76. G. Chen, A. Shakouri, Heat transfer in nanostructures for solid-state energy conversion. J. Heat Transfer 124, 242–252 (2002)

    Google Scholar 

  77. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466–479 (2009)

    Google Scholar 

  78. S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, K.E. Goodson, Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy Rev. 32, 313–327 (2014)

    Google Scholar 

  79. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Google Scholar 

  80. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nature Mater. 4, 455–459 (2005)

    Google Scholar 

  81. S. Guldin S. Hüttner, M. Kolle et al., Dye-sensitized solar cell based on a three-dimensional photonic crystal. Nano Lett. 10, 2303–2309 (2010)

    Google Scholar 

  82. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon. 8, 506–515 (2014)

    Google Scholar 

  83. S. Basu, Y.-B. Chen, Z.M. Zhang, Microscale radiation in thermophotovoltaic devices—a review. Intl. J. Ener. Res. 31, 689–716 (2007)

    Google Scholar 

  84. O. Behar, A. Khellaf, K. Mohammedia, A review of studies on central receiver solar thermal power plants. Renew. Sustain. Energy Rev. 23, 12–39 (2013)

    Google Scholar 

  85. L.A. Weinstein, J. Loomis, B. Bhatia, D.M. Bierman, E.N. Wang, G. Chen, Concentrated solar power. Chem. Rev. 115, 12797−12838 (2015)

    Google Scholar 

  86. H. Wang, V.P. Sivan, A. Mitchell, G. Rosengarten, P.E. Phelan, L.P. Wang, Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting. Sol. Energy Mater. Sol. Cells 137, 235–242 (2015)

    Google Scholar 

  87. Y. Li, C. Lin, D. Zhou et al., Scalable all-ceramic nanofilms as highly efficient and thermally stable selective solar absorbers. Nano Energy 64, 103947 (2019)

    Google Scholar 

  88. P.G. Loutzenhiser, A. Meier, A. Steinfeld, Review of the two-step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 3, 4922–4938 (2010)

    Google Scholar 

  89. A.J. Schrader, A.P. Muroyama, P.G. Loutzenhiser, Solar electricity via an air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Co3O4/CoO redox reactions: thermodynamic analysis. Sol. Energy 118, 485–495 (2015)

    Google Scholar 

  90. A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanović, M. Soljačić, E.N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotech. 9, 126–130 (2014)

    Google Scholar 

  91. D.M. Bierman, A. Lenert, W.R. Chan, B. Bhatia, I. Celanović, M. Soljačić, E.N. Wang, Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1, 16068 (2016)

    Google Scholar 

  92. G. Crabtree, M. Dresselhaus, M. Buchanan, The hydrogen economy. Phys. Today, 39–44, December 2004

    Google Scholar 

  93. B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies. Nature 414, 345–352 (2001)

    Google Scholar 

  94. Z. Gao, L.V. Mogni, E.C. Miller, J.G. Railsback, S.A. Barnett, A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016)

    Google Scholar 

  95. S.M. Senn, D. Poulikakos, Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells. J. Power Sources 130, 178–191 (2004)

    Google Scholar 

  96. T.M. Bandhauer, S. Garimella, T.F. Fuller, A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158, R1–R25 (2011)

    Google Scholar 

  97. R. Kantharaj, A.M. Marconnet, Heat generation and thermal transport in lithium-ion batteries: a scale-bridging perspective. Nanoscale Microscale Thermophys. Eng. 23, 128–156 (2019)

    Google Scholar 

  98. I. Valov, E. Linn, S. Tappertzhofen, S. Schmelzer, J. van den Hurk, F. Lentz, R. Waser, Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013)

    Google Scholar 

  99. Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015)

    Google Scholar 

  100. A. Lewis, H. Taha, A. Strinkovski et al., Near-field optics: from subwavelength illumination to nanometric shadowing. Nat. Biotechnol. 21, 1378–1386 (2003)

    Google Scholar 

  101. X. Michalet, F.F. Pinaud, L.A. Bentolila et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    Google Scholar 

  102. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nature Mater. 4, 435–446 (2005)

    Google Scholar 

  103. B. Yu, M. Meyyappan, Nanotechnology: role in emerging nanoelectronics. Solid-State Electron. 50, 536–544 (2006)

    Google Scholar 

  104. C. Joachim, J.K. Gimzewski, A. Aviram, Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

    Google Scholar 

  105. A. Vilan, D. Aswal, D. Cahen, Large-area, ensemble molecular electronics: motivation and challenges. Chem. Rev. 17, 4248–4286 (2017)

    Google Scholar 

  106. P. Cheng, S. Choi, Y. Jaluria, D. Q. Li, P. M. Norris, D. Y. Tzou, Special issue on micro/nanoscale heat transfer, Part I. J. Heat Transfer 131, 030301 (2009); Part II, ibid, 131, 040301 (2009)

    Google Scholar 

  107. P. Cheng, Foreword to special issue on micro/nanoscale heat and mass transfer. J. Heat Transfer 134, 050301 (2012)

    Google Scholar 

  108. Z.M. Zhang, P.M. Norris, G.P. Peterson, Foreword to special issue on micro/nanoscale heat and mass transfer. J. Heat Transfer 135, 090501 (2013)

    Google Scholar 

  109. L.Q. Wang, Y. Jaluria, Foreword to special issue on advances in micro/nanoscale heat and mass transfer. J. Heat Transfer 137, 090301 (2015)

    Google Scholar 

  110. Z.M. Zhang, C. Yang, D.Y. Tzou, Foreword to special issue on micro/nanoscale heat and mass transfer, Part I, J. Heat Transfer 139, 050301 (2017); Part II, ibid, 140, 010301 (2018)

    Google Scholar 

  111. V. Prasad, Y. Jaluria, G. Chen (eds.), Annual Review of Heat Transfer, vol. 14 (Begell House, New York, 2005)

    Google Scholar 

  112. Z. M. Zhang, http://zhang-nano.gatech.edu/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuomin M. Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Z.M. (2020). Introduction. In: Nano/Microscale Heat Transfer. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-45039-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45039-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45038-0

  • Online ISBN: 978-3-030-45039-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics