Skip to main content

Role of Ionic Liquids in Food and Bioproduct Industries

  • Chapter
  • First Online:
Nanotechnology-Based Industrial Applications of Ionic Liquids

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

  • 548 Accesses

Abstract

One of the most significant directions of the world analysis is the hunt for new chemical compounds with special properties. Ionic liquids square measure such compounds. Their application brings new potentialities for contemporary chemical technology. The ionic liquids match well within the assumptions of inexperienced chemistry. In distinction to the previous approach, the inexperienced chemistry needs style and promotes better reaction and separation of latest methods and chemicals which permit the reduction or elimination of use and production of venturesome materials (Burczyk 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyi O, Smith O, Robles S (2007) Public policy and the challenge of chronic noncommunicable diseases. World Bank, Washington, DC

    Google Scholar 

  • Ali R, Karthikeyan OP, Hao HTN, Heimann K (2016) Hydrolysis treatments of fruit and vegetable waste for production of biofuel precursors. Bioresour Technol 217:100–103

    Google Scholar 

  • Aliyu S, Bala M (2011) Brewr’s spent grain: a review of its potentials and applications. Afr J Biotechnol 10:324–331

    CAS  Google Scholar 

  • B. I. Service, Preparatory Study on Food Waste across E.U.-27 for the European Commission (2010). http://ec.europa.eu/environment/eussd/pdf/bio_foodwaste_report.pdf. Accessed 6 July 2012

  • Bica K, Gaertner P, Rogers RD (2011) Ionic liquids and fragrances - direct isolation of orange essential oil. Green Chem 13(8):1997–1999

    CAS  Google Scholar 

  • Blusztajn JK (1998) Choline, a vital amine. Science 281(5378):794–795

    CAS  PubMed  Google Scholar 

  • Bogdanov MG, Svinyarov I (2013) Ionic liquid-supported solid–liquid extraction of bioactive alkaloids. II. Kinetics, modeling and mechanism of glaucine extraction from Glaucium flavum Cr. (Papaveraceae). Sep Purif Technol 103:279–288

    CAS  Google Scholar 

  • Burczyk B (2014) Zielona chemia Zarys. Oficyna Wydawnicza Politechnika Wro- cławska, Wrocław

    Google Scholar 

  • Chen Y et al (2009) Synthesis of biodiesel from waste cooking oil using immobilized lipase in fixed bed reactor. Energy Convers Manag 50(3):668–673

    CAS  Google Scholar 

  • Chen HL, Kao HF, Wang JY, Wei GT (2014) Cytotoxicity of imidazole ionic liquids in human lung carcinoma A549 cell line. J Chin Chem Soc 61(7):763–769

    CAS  Google Scholar 

  • Chowdhury SA, Vijayaraghavan R, MacFarlane DR (2010) Distillable ionic liquid extraction of tannins from plant materials. Green Chem 12(6):1023–1028

    CAS  Google Scholar 

  • Claudio AFM, Ferreira AM, Freire MG, Coutinho JAP (2013) Enhanced extraction of caffeine from guarana seeds using aqueous solutions of ionic liquids. Green Chem 15(7):2002–2010

    CAS  Google Scholar 

  • Daniel JS, Nancy DK, Ibsen N (2007) Contaminant, occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion progress. Bioresour Technol 98:2942–2948

    Google Scholar 

  • De La Rubia MA, Raposo F, Rincón B, Borja R (2009) Evaluation of the hydrolytic-acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Bioresour Technol 100(18):4133–4138

    PubMed  Google Scholar 

  • De Maria PD (2008) “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew Chem Int Ed 47:6960–6968

    Google Scholar 

  • De CD, Wen Z, Gottfried O, Schmidt F, Fei F (2017) A review of global strategies promoting the conversion of food waste to bioenergy via anaerobic digestion. Renew Sust Energ Rev 79:204–221

    Google Scholar 

  • Deetlefs M, Seddon KR (2010) Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem 12:17–30

    CAS  Google Scholar 

  • Dogliotti S, Giller KE, VanIttersum MK (2014) Achieving global food security whilst reconciling demands on the environment: report of the first international conference on global food security. Food Secur 6(2):299–302

    Google Scholar 

  • Du FY, Xiao XH, Li GK (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizoma Polygoni Cuspidati. J Chromatogr A 1140(1–2):56–62

    CAS  PubMed  Google Scholar 

  • Dupont J, de Souza RF, Suarez PAZ (2002) Ionic liquid (molten salt) phase organometallic catalysis. Chem Rev 102:3667–3691

    CAS  PubMed  Google Scholar 

  • Earle MJ, Esperança JMSS, Gilea MA, Canongia Lopes JN, Rebelo LPN, Seddon KR, Widegren JA (2006) Nature 439:831–834

    CAS  PubMed  Google Scholar 

  • Egorova KS, Ananikov VP (2014) Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem 7(2):336–360

    CAS  PubMed  Google Scholar 

  • Erfurt K, Wandzik I, Walczak K, Matuszek K, Chrobok A (2014) Green Chem 16:3508–3514

    CAS  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2016) Pulses and Climate Change: Rome

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations) (2011) Global food losses and food waste - extent, causes and prevention, – The Swedish Institute for Food and Biotechnology, ISBN 978-91-7290-323-4

    Google Scholar 

  • Fei ZF, Geldbach TJ, Zhao DB, Dyson PJ (2006) From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem Eur J 12:2123–2130

    Google Scholar 

  • Frade RFM, Afonso CAM (2010) Impact of ionic liquids in environment and humans: an overview. Hum Exp Toxicol 29(12):1038–1054

    CAS  PubMed  Google Scholar 

  • Fraga-Dubreuil J, Bazureau JP (2001) Grafted ionic liquid-phase-supported synthesis of small organic molecules. Tetrahedron Lett 42:6097–6100

    CAS  Google Scholar 

  • Freemantle M (1998) Ionic liquids may boost clean technology development. Chem Eng News 76:32–37

    Google Scholar 

  • Garcia H, Ferreira R, Petkovic M, Ferguson JL, Leitao MC, Gunaratne HQN, Seddon KR, Rebelo LPN, Silva Pereira C (2010) Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem 12(3):367–369

    CAS  Google Scholar 

  • Gorke J, Srienc F, Kazlauskas R (2010) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53

    CAS  Google Scholar 

  • Gruttadauria M, Riela S, Aprile C, Lo Meo P, D’Anna F, Noto R (2006) Supported ionic liquids. New recyclable materials for the l-proline-catalyzed aldol reaction. Adv Synth Catal 348:82–92

    CAS  Google Scholar 

  • Gu T, Held MA, Faik A (2013) Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production. Environ Technol 34(13–14):1735–1749

    CAS  PubMed  Google Scholar 

  • Guo F, Fang Z, Tian XF, Long YD, Jiang LQ (2011) One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids. Bioresour Technol 102(11):6469–6472

    CAS  PubMed  Google Scholar 

  • Guo W, Li H, Ji G, Zhang G (2012) Ultrasound-assisted production of biodiesel from soybean oil using Brønsted acidic ionic liquid as catalyst. Bioresour Technol 125:332–334

    CAS  PubMed  Google Scholar 

  • Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A (2011) Global food losses and food waste. Extend, Causes and Prevention, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrog Energy 29(6):569–577

    CAS  Google Scholar 

  • Han W, Lam WC, Melikoglu M, Wong MT, Leung HT, Ng CL, Yan P, Yeung SY, CSK L (2015) Kinetic analysis of a crude enzyme extract produced via solid-state fermentation of bakery waste. ACS Sust Chem Eng 3(9):2043–2048

    CAS  Google Scholar 

  • Harjani JR, Singer RD, Garciac MT, Scammells PJ (2009a) Biodegradable pyridinium ionic liquids: design, synthesis and evaluation. Green Chem 11:83–90

    CAS  Google Scholar 

  • Harjani JR, Farrell J, Garcia MT, Singer RD, Scammells PJ (2009b) Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem 11:821–829

    CAS  Google Scholar 

  • He Y et al (2012) Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv 30(4):817–858

    CAS  PubMed  Google Scholar 

  • Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH Jr, Rogers RD (2007) New J Chem 31:1429–1436

    CAS  Google Scholar 

  • Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    CAS  Google Scholar 

  • Jodynis-Liebert J, Nowicki M, Murias M, Adamska T, Ewertowska M, Kujawska M, Piotrowska H, Konwerska A, Ostalska-Nowicka D, Pernak J (2010) Cytotoxicity, acute and subchronic toxicity of ionic liquid, didecyldimethylammonium saccharinate, in rats. Regul Toxicol Pharmacol 57(2–3):266–273

    CAS  PubMed  Google Scholar 

  • Katritzky AR, Singh S, Kirichenko K, Holbrey JD, Smiglak M, Reichert WM, Rogers RD (2005) Chem Commun:868–870

    Google Scholar 

  • Koike Y et al (2009) Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. J Biosci Bioeng 108(6):508–512

    CAS  PubMed  Google Scholar 

  • Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem 10(1):104–110

    CAS  Google Scholar 

  • Kumar D, Jain VK, Shanker G, Srivastava A (2003) Utilization of fruit waste for citric acid production by solid state fermentation. Process Biochem 38(12):1725–1729

    CAS  Google Scholar 

  • Lafarga T, Teagase MH (2014) Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Sci 98:227–239

    CAS  PubMed  Google Scholar 

  • Lago S, Rodríguez H, Arce A, Soto A (2014) Improved concentration of citrus essential oil by solvent extraction with acetate ionic liquids. Fluid Phase Equilib 361:37–44

    CAS  Google Scholar 

  • Lee SG (2006) Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem Commun:1049–1063

    Google Scholar 

  • Lewandowski A, Świderska-Mocek A (2009) J Power Sources 194:601–609

    CAS  Google Scholar 

  • Litchifeld JH (1987) Food Biotechnol 1:29–57

    Google Scholar 

  • Liang R, Bao Z, Su B, Xing H, Yang Q, Yang Y (2013) Feasibility of ionic liquids as extractants for selective separation of vitamin D3 and Tachysterol3 by solvent extraction. J Agric Food Chem 61:3479–3487

    Google Scholar 

  • Lou Z, Wang H, Zhu S, Chen S, Zhang M, Wang Z (2012) Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves. Anal Chim Acta 716:28–33

    CAS  PubMed  Google Scholar 

  • Lu H, Liu Y (2009) Production of biodiesel from Jatropha curcas L. oil. Comput Chem Eng 33:1091–1096

    CAS  Google Scholar 

  • Luo Y, Ling Y, Wang X, Han Y, Zeng X, Sun R (2013) Maillard reaction products from chitosanexylan ionic liquid solution. Carbohydr Polym 98(1):835–841.

    Google Scholar 

  • Ludwig R (2001) Water Angew Chem Int Ed 40:1808–1827

    CAS  Google Scholar 

  • Mai NL, Ahn K, Bae SW, Shin DW, Morya VK, Koo YM (2014) Ionic liquids as novel solvents for the synthesis of sugar fatty acid ester. Biom J 9(12):1565–1572.

    Google Scholar 

  • MacFarlane DR, Forsyth M, Howlett PC, Pringle JM, Sun J, Annat G, Neil W, Izgorodina EI (2007) Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc Chem Res 40:1165–1173

    CAS  PubMed  Google Scholar 

  • Magiera S, Sobik A (2017) Ionic liquid-based ultrasound-assisted extraction coupled with liquid chromatography to determine isoflavones in soy foods. J Food Compos Anal 57:94–101

    Google Scholar 

  • Martins PLG, De Rosso, VV (2016) Thermal and light stabilities and antioxidant activity of carotenoids from tomatoes extracted using an ultrasound assisted completely solvent-free method. Foodserv Res Int 82:156–164.

    Google Scholar 

  • Masoud Z, Wan Mohd AWD, Mohamed K (2009) Fuel Process Technol 90:770

    Google Scholar 

  • Maximo GJ, Costa MC, Coutinho JAP, Meirelles AJA (2014) Trends and demands in the solid-liquid equilibrium of lipidic mixtures. RSC Adv 4(60):31840–31850

    CAS  Google Scholar 

  • Memon MA (2010) Integrated solid waste management based on the 3R approach. J Mater Cycles Waste 12(1):30–40

    CAS  Google Scholar 

  • Miao WS, Chan TH (2005) Ionic-liquid-supported peptide synthesis demonstrated by the synthesis of leu5-enkephalin. J Org Chem 70:3251–3255

    CAS  PubMed  Google Scholar 

  • Ni X, Xing H, Yang Q, Wang J, Su B, Bao Z, Yang Y, Ren Q (2012) Selective liquid-liquid extraction of natural phenolic compounds using amino acid ionic liquids: a case of α-tocopherol and methyl linoleate separation. Ind Eng Chem Res 51(18):6480–6488

    CAS  Google Scholar 

  • Ohkouchi Y, Inoue Y (2007) Impact of chemical components of organic wastes on L(+)-lactic acid production. Bioresour Technol 98(3):546–553

    CAS  PubMed  Google Scholar 

  • Pan J et al (2008) Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrog Energy 33(23):6968–6975

    CAS  Google Scholar 

  • Partt J, Barthel M, Macnaughton S (2010) Philos Trans R Soc B 365:3065–3081

    Google Scholar 

  • Passos H, Freire MG, Coutinho JAP (2014) Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chem 16(12):4786–4815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paterno A, D’Anna F, Musumarra G, Noto R, Scire S (2014) A multivariate insight into ionic liquids toxicities. RSC Adv 4(46):23985–24000

    CAS  Google Scholar 

  • Peric B, Sierra J, Martí E, Cruañas R, Garau MA, Arning J, Bottin-Weber U, Stolte S (2013) Ecotoxicity and biodegradability of selected protic and aprotic ionic liquids. J Hazard Mater 261:99–105

    CAS  PubMed  Google Scholar 

  • Pereira MM, Pedro SN, Quental MV, Lima A, Coutinho JA, Freire MG (2015) Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium- and ammonium-based ionic liquids. J Biotechnol 206:17–25.

    Google Scholar 

  • Pernak J, Sobaszkiewicz K, Mirska I (2003) Green Chem 5:52–56

    CAS  Google Scholar 

  • Pernak A, Iwanik K, Majewski P, Grzymisławski M, Pernak J (2005) Acta Histo Chem 107(2):149–156

    CAS  Google Scholar 

  • Pernak J, Walkiewicz F, Maciejewska M, Zaborski M (2010) Ind Eng Chem Res 49:5012–5017

    CAS  Google Scholar 

  • Pernak J, Nawrot J, Kot M, Markiewicz B, Niemczak M (2013) RSC Adv:25019–25029

    Google Scholar 

  • Peter W, Wilhelm K (2009) Ionic liquids - new “solutions” for transition metal catalysis. Angew Int Ed 39:3772–3789

    Google Scholar 

  • Qin L, Zhang J, Cheng H, Chen L, Qi Z, Yuan W (2016) Selection of Imidazolium-based ionic liquids for vitamin E extraction from deodorizer distillate. ACS Sustain Chem Eng 4(2):583–590

    CAS  Google Scholar 

  • Rao MS, Singh SP (2004) Bioenergy conversion studies of organic fraction of MSW:kinetic studies and gas yield–organic loading relationships for process optimisation. Bioresour Technol 95(2):173–185

    CAS  PubMed  Google Scholar 

  • Ressmann AK, Zirbs R, Pressler M, Gaertner P, Bica K (2013) Surface-active ionic liquids for micellar extraction of piperine from black pepper. Z. Naturforsch., B. J Chem Sci 68(10):1129–1137

    CAS  Google Scholar 

  • Ribeiro BD, Coelho MAZ, Rebelo LPN, Marrucho IM (2013) Ionic liquids as additives for extraction of saponins and polyphenols from mate (Ilex paraguariensis) and tea (Camellia sinensis). Ind EngChem Res 52(34):12146–12153

    CAS  Google Scholar 

  • Riemer J, Kristoffersen M (1999) Information on waste management practices. A proposed electronic framework. European Environmental Agency, Copenhagen

    Google Scholar 

  • Riisager A, Fehrmann R, Haumann M, Wasserscheid P (2006) Supported ionic liquid phase (SILP) catalysis: an innovative concept for homogeneous catalysis in continuous fixed-bed reactors. Eur J Inorg Chem 2006:695–706

    Google Scholar 

  • Rogers RD, Seddon KR (2002) ACS Symposium Series 818, American Chemical Society. Conference materials

    Google Scholar 

  • Roosen C, Muller P, Greiner L (2008) Ionic liquids in biotechnology: applications and perspectives for biotransformations. Appl Microbiol Biotechnol 81:607–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roszak R, Trzeciak AM, Pernak J, Borucka N (2011) Appl Catal A Gen 409–410:148–155

    Google Scholar 

  • Sakai K, Ezaki Y (2006) Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J Biosci Bioeng 101(6):457–463

    CAS  PubMed  Google Scholar 

  • Sakai SI, Yoshida H, Hirai Y, Asari M, Takigami H et al (2011) International comparative study of 3R and waste management policy developments. J Mater Cycles Waste 13(2):86–102

    CAS  Google Scholar 

  • Sasoki MM (2012) Factor influencing the degradation of garbage is methanogenic bioreactors and impacts on biogas formation. Appl Microb Biotechnol 94:575–582

    Google Scholar 

  • Shao M, Zhang X, Li N, Shi J, Zhang H, Wang Z, Zhang H, Yu A, Yu Y (2014) Ionic liquid-based aqueous two-phase system extraction of sulfonamides in milk. J Chromatogr B Anal Technol Biomed Life Sci 961:5–12

    CAS  Google Scholar 

  • Smiglak M, Reichert WM, Holbrey JD, Wilkes JS, Sun L, Thrasher JS, Kirichenko K, Singh S, Katritzky AR, Rogers RD (2006) Chem Commun:2554–2556

    Google Scholar 

  • Steudte S, Bemowsky S, Mahrova M, Bottin-Weber U, Tojo-Suarez E, Stepnowski P, Stolte S (2014) Toxicity and biodegradability of dicationic ionic liquids. RSC Adv 4(10):5198–5205

    CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  PubMed  Google Scholar 

  • Sun B, Qi L, Wang M (2014) Determination of preservatives in soft drinks by capillary electrophoresis with ionic liquids as the electrolyte additives. J Sep Sci 37(16):2248–2252

    CAS  PubMed  Google Scholar 

  • Tenenbaum DJ (2008) Food vs. Fuel: diversion of crops could cause more hunger. Environment Health Perspective 166(6):A254–A257

    Google Scholar 

  • Thi NBD, Kumar G, Lin CY (2015) An overview of food waste management in developing countries: current status and future perspective. J Environ Manag 157:220–229

    Google Scholar 

  • Tsarpali V, Dailianis S (2015) Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: role of acetone in the induced toxicity. Ecotoxicol Environ Saf 117:62–71

    CAS  PubMed  Google Scholar 

  • United Nations Industrial Development Organization, Food Wastes (2002). http://www.unido.org/leadmin/import/32068_35FoodWastes. Accessed 2 Feb 2012

  • Van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    PubMed  Google Scholar 

  • Viboud S, Papaiconomou N, Cortesi A, Chatel G, Draye M, Fontvieille D (2012) Correlating the structure and composition of ionic liquids with their toxicity on Vibrio fischeri: a systematic study. J Hazard Mater 215−216:40–48

    PubMed  Google Scholar 

  • Wang QH, Ma HZ (2008) Ethanol production from kitchen garbage using response surface methodology. J Biochem Eng 39:604–610

    CAS  Google Scholar 

  • Wang Q et al (2005) Bioconversion of kitchen garbage to lactic acid by two wild strains of lactobacillus species. J Environ Sci Health 40(10):1951–1962

    CAS  Google Scholar 

  • Wang ZS, Koumura N, Cui Y, Miyashita M, Mori S, Hara K (2009) Exploitation of ionic liquid electrolyte for dye-sensitized solar cells by molecular modification of organic-dye sensitizers. Chem Mater 21:2810–2816

    CAS  Google Scholar 

  • Wang R, Chang Y, Tan Z, Li F (2016) Applications of choline amino acid ionic liquid in extraction and separation of flavonoids and pectin from ponkan peels. Sep Sci Technol 51(7):1093–1102

    Google Scholar 

  • Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3773–3789

    Google Scholar 

  • Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Hoboken

    Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    CAS  PubMed  Google Scholar 

  • World Health Organization (2005) Preventing chronic diseases: a vital investment. WHO, Geneva. http://www.who.int/chp/chronic_disease_report/en/. Accessed Oct 2007

    Google Scholar 

  • Wu C, Chen W, Zhong L, Peng X, Sun R, Fang J (2014) Conversion of xylose into furfural using lignosulfonic1 acid as catalyst in ionic liquid. J Agric Food Chem 62(30):7430–7435

    Google Scholar 

  • Yaakob Z et al (2013) Overview of the production of biodiesel from waste cooking oil. Renew Sust Energ Rev 18:184–193

    CAS  Google Scholar 

  • Yach D, Hawkes C, Gould CL, Hofman KJ (2004) The global burden of chronic diseases: overcoming impediments to prevention and control. JAMA 291:2616–2622

    CAS  PubMed  Google Scholar 

  • Yan F, Xia S, Wang Q, Ma P (2012) Predicting the toxicity of ionic liquids in leukemia rat cell line by the quantitative structure-activity relationship method using topological indexes. Ind Eng Chem Res 51(43):13897–13901

    CAS  Google Scholar 

  • Yang Q, Dionysiou DD (2004) Photolytic degradation of chlorinated phenols in room temperature ionic liquids. J Photochem Photobiol A Chem 165:229–240

    CAS  Google Scholar 

  • Yang SY et al (2006) Lactic acid fermentation of food waste for swine feed. Bioresour Technol 97(15):1858–1864

    CAS  PubMed  Google Scholar 

  • Zhai Y, Sun S, Wang Z, Cheng J, Sun Y, Wang L, Zhang Y, Zhang H, Yu A (2009) Microwave extraction of essential oils from dried fruits of Illicium verum Hook. f. and Cuminum cyminum L. using ionic liquid as the microwave absorption medium. J Sep Sci 32(20):3544–3549

    CAS  PubMed  Google Scholar 

  • Zhang Y, Dube MA, McLean DD, Kates M (2003) Bioresour Technol 89:1

    CAS  PubMed  Google Scholar 

  • Zhang C et al (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176

    CAS  PubMed  Google Scholar 

  • Zhao D, Liao Y, Zhang ZD (2007) Toxicity of ionic liquids. Clean Soil Air Water 35(1):42–48

    Google Scholar 

  • Zhu HB, Fan YC, Qian YL, Tang HF, Ruan Z, Liu DH, Wang H (2014) Determination of spices in food samples by ionic liquid aqueous solution extraction and ion chromatography. Chin Chem Lett 25(3):465–468

    CAS  Google Scholar 

Download references

Acknowledgements

  1. 1.

    The author gratefully acknowledges valuable suggestions given by Dr. N Harikrishna, Assistant Professor, Annamacharya Institute of Technology and Sciences, Tirupati, and Dr. M. Ravindra, Associate Professor, IIIT, RGUKNT, R.K. Valley, Idupulapaya, A.P., for successful completion of this chapter.

  2. 2.

    It is a pleasure to express my deep sense of gratitude to my graduate students, Mr. U. Rambhupal Reddy and Mr. S. Iliyaz Ali, for their continuous and cheerful encouragement and enthusiastic hard work in finalising this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, K.S. (2020). Role of Ionic Liquids in Food and Bioproduct Industries. In: Inamuddin, Asiri, A. (eds) Nanotechnology-Based Industrial Applications of Ionic Liquids. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-44995-7_16

Download citation

Publish with us

Policies and ethics