Skip to main content

Recent Advances in the Application of Greener Solvents for Extraction, Recovery and Dissolution of Precious Metals and Rare Earth Elements from Different Matrices

  • Chapter
  • First Online:
Nanotechnology-Based Industrial Applications of Ionic Liquids

Abstract

The demand for precious and rare earth elements is gradually increasing mainly due to the advancement in their various industrial applications. However, the mining industry is facing challenges of natural resource depletion and it is predicted that in the near future there will be no natural sources of these metals. Therefore, several studies have been conducted to recover precious and rare earth elements from secondary resources such as spent industrial catalysts, jewellery, magnets, automobile parts, and electronic and industrial effluents. For this reason, solvent extraction using ionic liquids has attracted a lot of attention. This is because ionic liquids have improved properties such as non-volatility, non-flammability and low toxicity (when compared with tradition organic solvents used in the recovery of precious metals and rare earth elements). In addition, ionic liquids can be used to separate, extract and recover ionic species without the aid of a ligand, thus rendering them as the best ion-exchange extractants. In this chapter, the application of ionic liquids for the extraction, dissolution and recovery of precious metals and rare earth elements from waste (secondary resources) is reviewed. Special attention is given to solvent extraction which has proven to be one of the most widely used methodologies for metal recovery. This is due to the attractive features such as simplicity, flexibility and rapidity. Application of deep eutectic solvents (known to be greener than traditional ionic liquids) has been discussed to tackle existing challenges of ionic liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Dca−:

Dicyanamide

DES:

Deep eutectic solvents

ILs:

Ionic liquids

IUPAC:

International Union of Pure and Applied Chemistry

NdFeB:

Neodymium magnet

REEs:

Rare earth metals

SCN−:

Thiocyanate

Tf2N−:

Bis(trifluoromethylsulphonyl)imide

References

  • Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  Google Scholar 

  • Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Eutectic-based ionic liquids with metal-containing anions and cations. Chem Eur J 13:6495–6501

    Article  CAS  Google Scholar 

  • Avdibegović D, Regadío M, Binnemans K (2018) Efficient separation of rare earths recovered by a supported ionic liquid from bauxite residue leachate. RSC Adv 8:11886–11893

    Article  Google Scholar 

  • Bakkar A, Neubert V (2019) Recycling of cupola furnace dust: extraction and electrodeposition of zinc in deep eutectic solvents. J Alloys Compd 771:424–432

    Article  CAS  Google Scholar 

  • Banda R, Forte F, Onghena B, Binnemans K (2019) Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids. RSC Adv 9:4876–4883

    Article  CAS  Google Scholar 

  • Binnemans K, Jones PT, Blanpain B, Van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. https://doi.org/10.1016/j.jclepro.2012.12.037

    Article  CAS  Google Scholar 

  • Boudesocque S, Mohamadou A, Conreux A, Marin B, Dupont L (2019) The recovery and selective extraction of gold and platinum by novel ionic liquids. Sep Purif Technol 210:824–834. https://doi.org/10.1016/j.seppur.2018.09.002

    Article  CAS  Google Scholar 

  • Cardoso CED, Almeida JC, Lopes CB, Trindade T, Vale C, Pereira E (2019) Recovery of rare earth elements by carbon-based. Nanomaterials 9:814

    Article  CAS  Google Scholar 

  • Chen Y-L, Zhang X, You T-T, Xu F (2019) Deep eutectic solvents (DESs) for cellulose dissolution: a mini-review. Cellulose 26:205–213

    Article  CAS  Google Scholar 

  • Cieszynska A, Wieczorek D (2018) Extraction and separation of palladium(II), platinum(IV), gold(III) and rhodium(III) using piperidine-based extractants. Hydrometallurgy 175:359–366. https://doi.org/10.1016/j.hydromet.2017.12.019

    Article  CAS  Google Scholar 

  • Davris P, Balomenos E, Panias D, Paspaliaris I (2016) Selective leaching of rare earth elements from bauxite residue (red mud), using a functionalized hydrophobic ionic liquid. Hydrometallurgy 164:125–135

    Article  CAS  Google Scholar 

  • Davris P, Marinos D, Balomenos E, Alexandri A, Gregou M, Panias D, Paspaliaris I (2018) Leaching of rare earth elements from ‘Rödberg’ ore of fen carbonatite complex deposit, using the ionic liquid HbetTf2N. Hydrometallurgy 175:20–27. https://doi.org/10.1016/j.hydromet.2017.10.031

    Article  CAS  Google Scholar 

  • Devi N, Sukla LB (2019) Studies on liquid-liquid extraction of yttrium and separation from other rare earth elements using bifunctional ionic liquids. Miner Process Extr Metall Rev 40:46–55

    Article  CAS  Google Scholar 

  • Dupont D, Binnemans K (2015) Recycling of rare earths from NdFeB magnets using a combined leaching/extraction system based on the acidity and thermomorphism of the ionic liquid [Hbet][Tf 2 N]. Green Chem 17:2150–2163

    Article  CAS  Google Scholar 

  • Entezari-Zarandi A, Larachi F (2019) Selective dissolution of rare-earth element carbonates in deep eutectic solvents. J Rare Earths 37:528–533. https://doi.org/10.1016/j.jre.2018.07.015

    Article  CAS  Google Scholar 

  • Farzam S, Feyzi F (2019) Response surface methodology applied to extraction optimization of gold(III) by combination of imidazolium-based ionic liquid and 1-octanol from hydrochloric acid. Sep Sci Technol:1–13. https://doi.org/10.1080/01496395.2019.1581217

  • Geng Y, Xiang Z, Lv C, Wang N, Wang Y, Yang Y (2019) Recovery of gold from hydrochloric medium by deep eutectic solvents based on quaternary ammonium salts. Hydrometallurgy

    Google Scholar 

  • Gore S, Baskaran S, Koenig B (2011) Efficient synthesis of 3,4-dihydropyrimidin-2-ones in low melting tartaric acid–urea mixtures. Green Chem 13:1009–1013

    Article  CAS  Google Scholar 

  • Jenkin GRT et al (2016) The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. Miner Eng 87:18–24. https://doi.org/10.1016/j.mineng.2015.09.026

    Article  CAS  Google Scholar 

  • Jorjani E, Shahbazi M (2016) The production of rare earth elements group via tributyl phosphate extraction and precipitation stripping using oxalic acid. Arab J Chem 9:S1532–S1539. https://doi.org/10.1016/j.arabjc.2012.04.002

    Article  CAS  Google Scholar 

  • Katsuta S, Watanabe Y, Araki Y, Kudo Y (2016) Extraction of gold(III) from hydrochloric acid into various ionic liquids: relationship between extraction efficiency and aqueous solubility of ionic liquids. ACS Sustain Chem Eng 4:564–571. https://doi.org/10.1021/acssuschemeng.5b00976

    Article  CAS  Google Scholar 

  • Kim S-H, Yang S-T, Kim J, Ahn W-S (2011) Sonochemical synthesis of Cu3 (BTC) 2 in a deep eutectic mixture of choline chloride/dimethylurea. Bull Kor Chem Soc 32:2783–2786

    Article  Google Scholar 

  • Kose Mutlu B, Cantoni B, Turolla A, Antonelli M, Hsu-Kim H, Wiesner MR (2018) Application of nanofiltration for rare earth elements recovery from coal fly ash leachate: performance and cost evaluation. Chem Eng J 349:309–317. https://doi.org/10.1016/j.cej.2018.05.080

    Article  CAS  Google Scholar 

  • Kubota F, Kono R, Yoshida W, Sharaf M, Kolev SD, Goto M (2019) Recovery of gold ions from discarded mobile phone leachate by solvent extraction and polymer inclusion membrane (PIM) based separation using an amic acid extractant. Sep Purif Technol 214:156–161. https://doi.org/10.1016/j.seppur.2018.04.031

    Article  CAS  Google Scholar 

  • Kumar ASK, Sharma S, Reddy RS, Barathi M, Rajesh N (2015) Comprehending the interaction between chitosan and ionic liquid for the adsorption of palladium. Int J Biol Macromol 72:633–639. https://doi.org/10.1016/j.ijbiomac.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zhu N, Li Y, Wu P, Dang Z, Ke Y (2019) Efficient recovery of rare earth elements from discarded NdFeB magnets. Process Saf Environ Prot 124:317–325. https://doi.org/10.1016/j.psep.2019.01.026

    Article  CAS  Google Scholar 

  • Makanyire T, Sanchez-Segado S, Jha A (2016) Separation and recovery of critical metal ions using ionic liquids. Adv Manufact 4:33–46. https://doi.org/10.1007/s40436-015-0132-3

    Article  CAS  Google Scholar 

  • Mamilla JL, Novak U, Grilc M, Likozar B (2019) Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals. Biomass Bioenergy 120:417–425

    Article  CAS  Google Scholar 

  • Marset X, Torregrosa-Crespo J, Martínez-Espinosa RM, Guillena G, Ramón DJ (2019) Multicomponent synthesis of sulfonamides from triarylbismuthines, nitro compounds and sodium metabisulfite in deep eutectic solvents green chemistry

    Google Scholar 

  • Masilela M, Ndlovu S (2019) Extraction of Ag and au from chloride electronic waste leach solutions using ionic liquids. J Environ Chem Eng 7:102810. https://doi.org/10.1016/j.jece.2018.11.054

    Article  CAS  Google Scholar 

  • Nguyen VT, Lee J-c, Jeong J, Kim B-S, Gr C, Chagnes A (2015) Extraction of gold (III) from acidic chloride media using phosphonium-based ionic liquid as an anion exchanger. Ind Eng Chem Res 54:1350–1358

    Article  CAS  Google Scholar 

  • Papaiconomou N, Svecova L, Bonnaud C, Cathelin L, Billard I, Chainet E (2015) Possibilities and limitations in separating Pt (IV) from Pd (II) combining imidazolium and phosphonium ionic liquids. Dalton Trans 44:20131–20138

    Article  CAS  Google Scholar 

  • Pavón S, Fortuny A, Coll MT, Sastre AM (2018) Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents. Waste Manag 82:241–248. https://doi.org/10.1016/j.wasman.2018.10.027

    Article  CAS  PubMed  Google Scholar 

  • Perez JPH, Folens K, Leus K, Vanhaecke F, Van Der Voort P, Du Laing G (2019) Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resour Conserv Recycl 142:177–188. https://doi.org/10.1016/j.resconrec.2018.11.029

    Article  Google Scholar 

  • Riaño S et al (2017) Separation of rare earths and other valuable metals from deep-eutectic solvents: a new alternative for the recycling of used NdFeB magnets. RSC Adv 7:32100–32113

    Article  Google Scholar 

  • Roda A, Matias AA, Paiva A, Duarte ARC (2019) Polymer science and engineering using deep eutectic solvents. Polymers 11:912

    Article  Google Scholar 

  • Rodriguez Rodriguez N, Machiels L, Binnemans K (2019) p-Toluenesulfonic acid-based deep-eutectic solvents for solubilizing metal oxides. ACS Sustain Chem Eng 7:3940–3948

    Article  CAS  Google Scholar 

  • Roosen J, Van Roosendael S, Borra CR, Van Gerven T, Mullens S, Binnemans K (2016) Recovery of scandium from leachates of Greek bauxite residue by adsorption on functionalized chitosan–silica hybrid materials. Green Chem 18:2005–2013. https://doi.org/10.1039/c5gc02225h

    Article  CAS  Google Scholar 

  • Rzelewska-Piekut M, Regel-Rosocka M (2019) Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids. Sep Purif Technol 212:791–801. https://doi.org/10.1016/j.seppur.2018.11.091

    Article  CAS  Google Scholar 

  • Sánchez-Leija R et al (2019) Deep eutectic solvents as active media for the preparation of highly conducting 3D free-standing PANI xerogels and their derived N-doped and N, P-codoped porous carbons. Carbon 146:813–826

    Article  Google Scholar 

  • Serpe A (2018) 11 - green chemistry for precious metals recovery from WEEE∗∗ This chapter is dedicated to Prof. Paola Deplano on the occasion of her retirement. In: Vegliò F, Birloaga I (eds) Waste electrical and electronic equipment recycling. Woodhead Publishing, Sawston, pp 271–332. https://doi.org/10.1016/B978-0-08-102057-9.00011-1

    Chapter  Google Scholar 

  • Shahbaz K, Mjalli FS, Hashim M, Al Nashef IM (2010) Using deep eutectic solvents for the removal of glycerol from palm oil-based biodiesel. J Appl Sci 10:3349–3354

    Article  CAS  Google Scholar 

  • Shahbaz K, Mjalli F, Hashim M, AlNashef I (2011) Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuel 25:2671–2678

    Article  CAS  Google Scholar 

  • Shahbaz K, Baroutian S, Mjalli F, Hashim M, AlNashef I (2012) Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques. Thermochim Acta 527:59–66

    Article  CAS  Google Scholar 

  • Sharma S, Rajesh N (2016) Synergistic influence of graphene oxide and tetraoctylammonium bromide (frozen ionic liquid) for the enhanced adsorption and recovery of palladium from an industrial catalyst. J Environ Chem Eng 4:4287–4298. https://doi.org/10.1016/j.jece.2016.09.028

    Article  CAS  Google Scholar 

  • Singh BS, Lobo HR, Pinjari DV, Jarag KJ, Pandit AB, Shankarling GS (2013) Ultrasound and deep eutectic solvent (DES): a novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason Sonochem 20:287–293

    Article  CAS  Google Scholar 

  • Su X, Guo X, Zhao Z, Dong Y, Wang Y, Li F, Sun X (2018) An efficient and sustainable [P6,6,6,14]2[BDOAC] ionic liquid based extraction–precipitation strategy for rare earth recovery. Chem Eng Res Des 136:786–794. https://doi.org/10.1016/j.cherd.2018.06.029

    Article  CAS  Google Scholar 

  • Swain N, Mishra S (2019) A review on the recovery and separation of rare earths and transition metals from secondary resources. J Clean Prod 220:884–898. https://doi.org/10.1016/j.jclepro.2019.02.094

    Article  CAS  Google Scholar 

  • Tian GC, Li J, Y-x H (2010) Application of ionic liquids in hydrometallurgy of nonferrous metals. Trans Nonferrous Metals Soc China 20:513–520. https://doi.org/10.1016/S1003-6326(09)60171-0

    Article  CAS  Google Scholar 

  • Tran MK, Rodrigues M-TF, Kato K, Babu G, Ajayan PM (2019) Deep eutectic solvents for cathode recycling of Li-ion batteries. Nat Energy 4:339

    Article  CAS  Google Scholar 

  • Tunsu C, Petranikova M, Ekberg C, Retegan T (2016) A hydrometallurgical process for the recovery of rare earth elements from fluorescent lamp waste fractions. Sep Purif Technol 161:172–186. https://doi.org/10.1016/j.seppur.2016.01.048

    Article  CAS  Google Scholar 

  • Van Roosendael S, Regadío M, Roosen J, Binnemans K (2019) Selective recovery of indium from iron-rich solutions using an Aliquat 336 iodide supported ionic liquid phase (SILP). Sep Purif Technol 212:843–853. https://doi.org/10.1016/j.seppur.2018.11.092

    Article  CAS  Google Scholar 

  • Vasilyev DV, Rudnev AV, Broekmann P, Dyson PJ (2019) A general and facile approach for the electrochemical reduction of carbon dioxide inspired by deep eutectic solvents. ChemSusChem 12:1635–1639

    Article  CAS  Google Scholar 

  • Wang K et al (2017a) Recovery of rare earth elements with ionic liquids. Green Chem 19:4469–4493. https://doi.org/10.1039/c7gc02141k

    Article  CAS  Google Scholar 

  • Wang M, Tan Q, Chiang JF, Li J (2017b) Recovery of rare and precious metals from urban mines—a review. Front Environ Sci Eng 11:1. https://doi.org/10.1007/s11783-017-0963-1

    Article  Google Scholar 

  • Wang N, Wang Q, Lu W, Ru M, Yang Y (2019) Extraction and stripping of platinum (IV) from acidic chloride media using guanidinium ionic liquid. J Mol Liq:111040. https://doi.org/10.1016/j.molliq.2019.111040

  • Wei W, Cho C-W, Kim S, Song M-H, Bediako JK, Yun Y-S (2016a) Selective recovery of au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336. J Mol Liq 216:18–24. https://doi.org/10.1016/j.molliq.2016.01.016

    Article  CAS  Google Scholar 

  • Wei W, Reddy DHK, Bediako JK, Yun Y-S (2016b) Aliquat-336-impregnated alginate capsule as a green sorbent for selective recovery of gold from metal mixtures. Chem Eng J 289:413–422. https://doi.org/10.1016/j.cej.2015.12.104

    Article  CAS  Google Scholar 

  • Xie F, Zhang TA, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28. https://doi.org/10.1016/j.mineng.2013.10.021

    Article  CAS  Google Scholar 

  • Xing WD, Lee MS (2019) A process for the separation of noble metals from HCl liquor containing gold (III), palladium (II), platinum (IV), rhodium (III), and iridium (IV) by solvent extraction. PRO 7:243

    CAS  Google Scholar 

  • Xu K, Wang Y, Huang Y, Li N, Wen Q (2015) A green deep eutectic solvent-based aqueous two-phase system for protein extracting. Anal Chim Acta 864:9–20

    Article  CAS  Google Scholar 

  • Yang D, Ma P, Hou Z, Cheng Z, Li C, Lin J (2015) Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chem Soc Rev 44:1416–1448. https://doi.org/10.1039/c4cs00155a

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Ren J, Qu X (2013) G-quadruplexes form ultrastable parallel structures in deep eutectic solvent. Langmuir 29:1183–1191

    Article  Google Scholar 

  • Zhao H, Xu J, Sheng Q, Zheng J, Cao W, Yue T (2019) NiCo2O4 nanorods decorated MoS2 nanosheets synthesized from deep eutectic solvents and their application for electrochemical sensing of glucose in red wine and honey. J Electrochem Soc 166:H404–H411

    Article  CAS  Google Scholar 

  • Zhou H, Wang Y, Guo X, Dong Y, Su X, Sun X (2018) The recovery of rare earth by a novel extraction and precipitation strategy using functional ionic liquids. J Mol Liq 254:414–420. https://doi.org/10.1016/j.molliq.2018.01.078

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the University of Johannesburg, South Africa (Department of Chemical Sciences), and National Research Foundation (grant nos. 99720; 91230), South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philiswa N. Nomngongo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nomngongo, P.N., Biata, N.R., Sihlahla, M., Mpupa, A., Mketo, N. (2020). Recent Advances in the Application of Greener Solvents for Extraction, Recovery and Dissolution of Precious Metals and Rare Earth Elements from Different Matrices. In: Inamuddin, Asiri, A. (eds) Nanotechnology-Based Industrial Applications of Ionic Liquids. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-44995-7_14

Download citation

Publish with us

Policies and ethics