Skip to main content

Reproductive Biology of Grusonia bradtiana (Cactaceae): A Dominant Species and Endemic Clonal Cactus from Cuatro Ciénegas Basin and Contiguous Areas in the Chihuahuan Desert

  • Chapter
  • First Online:
Plant Diversity and Ecology in the Chihuahuan Desert

Abstract

Grusonia bradtiana “viejito” (old man cactus) is an endemic species from Cuatro Ciénegas Basin and nearby areas. Grusonia includes 17 clonal species distributed along North American deserts which grow in dense cushion or shrubs. Grusonia bradtiana reproduces sexually by flowering and fruiting, forming seeds with new genetic combinations (new genets). The species clones by fragmentation of stems of different sizes that root independently, producing genetically identical offspring (ramets). Clonal species develop complex reproductive interactions as pollination output depends on pollen transfer between genetically different genets or identical ramets. The hypothesis is that clonality negatively affects sexual reproduction as floral traits are adaptations to promote cross-pollination (among genets) and have evolved to reduce negative effects of inbreeding. We studied the reproductive biology of Grusonia bradtiana and assessed the effect of clonality upon its reproductive success with controlled pollination. We also determined the frequency and taxonomic identity of floral visitors, to assess the pollination syndrome. Flowering occurs once a year during spring. Flowers are diurnal with a life span of 8 h; they are yellow, with radial symmetry, yellow-white lobulated stigma, and produce nectar. Flowers have thigmonastic stamens with red filaments supporting anthers that contain high amount of viable pollen. The flower is perfect, there is no separation of sexual functions in time (dichogamy), but there is in space (herkogamy), attributes that allow selfing and may reduce sexual interference, respectively. The fruit is dry, possibly a trait unique to Grusonia. Pollinators are solitary bees (Diadasia and Melissodes), a melittophily pollination syndrome. The species require the pollinator services to set fruit and seeds, and it suffers inbreeding depression if self-pollinated, so pollination among ramets decreases seed set, representing a cost of clonality. The selfing rate is high when plants are big or if clonality is frequent, as pollinators tend to visit nearby flowers increasing geitonogamy. The species has a mixed mating system with an outcrossing tendency, where delayed selfing (autogamy and geitonogamy) is a mechanism that ensure reproduction when outcrossing fails.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson WG (1980) Demography and vegetative reproduction. In: Solbrig OT (ed) Demography and evolution in plant populations. University of California Press, Berkeley, CA, USA, pp 89–106

    Google Scholar 

  • Anderson EF (2001) The Cactus family. Timber Press, Portland, OR, USA

    Google Scholar 

  • Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Cladistics 27:470–489

    Google Scholar 

  • Barrett SCH (2013) The evolution of plant reproductive systems: how often are transitions irreversible? Proc Royal Soc B 280:1–9

    Google Scholar 

  • Barrett SCH, Jesson LK, Baker AM (2000) The evolution and function of stylar polymorphisms in flowering plants. Ann Bot 85:253–265

    Google Scholar 

  • Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389

    PubMed  Google Scholar 

  • Bravo-Hollis H (1978) Las Cactáceas de México Volume 1. Universidad Nacional Autónoma de México, México, DF, Mexico

    Google Scholar 

  • Bravo-Hollis H, Sánchez-Mejorada H (1991) Las Cactáceas de México Volume 2. Universidad Nacional Autónoma de México, México, DF, Mexico

    Google Scholar 

  • Camacho-Velázquez A, Ríos-Carrasco S, Vázquez-Santana S (2016) Biología reproductiva de la subfamilia Cactoideae (Cactaceae). Cact Suc Mex 61(4):100–127

    Google Scholar 

  • Cárdenas-Ramos D, Mandujano MC (2018) Florivory effects on pollinator preference and the reproductive output of a threatened living rock cactus, Ariocarpus retusus (Cactaceae). Haseltonia 25:1–7

    Google Scholar 

  • Carrillo-Ángeles IG, Mandujano MC, Golubov J (2011) Influences of the genetic neighborhood on ramet reproductive success in a clonal desert cactus. Population Ecology 53:449–458

    Google Scholar 

  • Casas A, Valiente-Banuet A, Rojas-Martínez A, Dávila P (1999) Reproductive biology and the process of domestication of the columnar cactus Stenocereus stellatus in Central Mexico. Am J Bot 86:534–542

    CAS  PubMed  Google Scholar 

  • Cervantes SM (2001) Variación geográfica en el sistema reproductivo de Pachycereus pringlei. Bachelor diss., Facultad de Ciencias UNAM, México, DF, Mexico

    Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Google Scholar 

  • Charpentier A (2002) Consequences of clonal growth for plant mating. Evol Ecol 15:521–530

    Google Scholar 

  • Clark-Tapia R, Molina-Freaner F (2004) Reproductive ecology of the rare clonal cactus Stenocereus eruca in the Sonoran Desert. Plant Syst Evol 247:155–164

    Google Scholar 

  • Cota-Sánchez H, Almeida OJG, Falconer DJ, Choi HJ, Bevan HL (2013) Intriguing thigmonastic (sensitive) stamens in the plains prickly pear Opuntia polyacantha (Cactaceae). Flora 208:381–389

    Google Scholar 

  • Crawley MJ (1993) GLIM for ecologists. Blackwell Scientific Publication, Oxford, UK

    Google Scholar 

  • Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46

    PubMed  Google Scholar 

  • Dafni A, Firmage D (2001) Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst Evol 222:113–132

    Google Scholar 

  • Del Castillo RF (1988) Fenología y remoción de semillas en Ferocactus histrix. Cact Suc Mex 33:5–14

    Google Scholar 

  • Del Castillo RF (1994) Polinización y otros aspectos de la biología floral de Ferocactus histrix. Cact Suc Mex 39:36–42

    Google Scholar 

  • Del Castillo RF, González-Espinosa M (1988) Una interpretación evolutiva del polimorfismo sexual de Opuntia robusta (Cactaceae). Agrociencia 71:185–196

    Google Scholar 

  • Eckert CG (2000) Contribution of autogamy and geitonogamy to self-fertilization in a mass-flowering, clonal plant. Ecology 81:532–542

    Google Scholar 

  • Everitt BS (1977) The analysis of contingency tables. Chapman and Hall, New York, NY, USA

    Google Scholar 

  • Fleming TH, Mauricem S, Buchmann SL et al (1994) Reproductive biology and relative fitness in a trioecious cactus, Pachycereus pringlei (Cactaceae). Am J Bot 81:858–867

    Google Scholar 

  • Flores-Vázquez JC, Rosa Barrera MD, Golubov J, Sánchez-Gallén I, Mandujano MC (2020) Ecological importance of Bajadas in the Chihuahuan Desert. In: Mandujano MC, Pisanty I, Eguiarte LE (eds) Plant diversity and Ecology in the Chihuahuan desert. Springer International, Cham, Switzerland

    Google Scholar 

  • García-Morales E, Carrillo-Angeles IG, Golubov J et al (2018) Influence of fruit dispersal on genotypic diversity and migration rates of a clonal cactus from the Chihuahuan Desert. Ecol Evol 8:12559–12575

    PubMed  PubMed Central  Google Scholar 

  • Golubov J, Mandujano MC, Franco M et al (1999) Demography of the invasive woody perennial Prosopis glandulosa (honey mesquite). J Ecol 87:955–962

    Google Scholar 

  • Goulson D (2000) Why do pollinators visit proportionally fewer flowers in large patches? Oikos 91:485–492

    Google Scholar 

  • Grant V, Grant KA (1979) Pollination of Opuntia basilaris and O. littoralis. Plant Syst Evol 132:321–325

    Google Scholar 

  • Grant V, Grant KA (1980) Clonal microspecies of hybrid origin in the Opuntia lindheimeri group. Bot Gaz 141:101–106

    Google Scholar 

  • Grant V, Grant KA, Hurd PD Jr (1979) Pollination of Opuntia lindheimeri and related species. Plant Syst Evol 132:313–320

    Google Scholar 

  • Guzmán U, Arias S, Dávila P (2003) Catálogo de cactáceas mexicanas. Universidad Nacional Autónoma de México- Comisión Nacional para el conocimiento y uso de la biodiversidad, México, DF, Mexico

    Google Scholar 

  • Handel SN (1985) The intrusion of clonal growth patterns on plant breeding systems. Am Nat 125:367–383

    Google Scholar 

  • Harder LD, Barrett SCH (1995) Mating cost of large floral displays in hermaphrodite plants. Nature 373:512–515

    CAS  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London, UK, 892 pp

    Google Scholar 

  • Henning T, Weigend M (2013) Beautiful, complicated—and intelligent? Novel aspects of the thigmonastic stamen movement in Loasaceae. Plant Signal Behav 8(6):E24605. https://doi.org/10.4161/PSB.24605

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman MT (1992) Functional dioecy in Echinocereus coccineus (Cactaceae): breeding systems, sex ratios, and geographic range of floral dimorphism. Am J Bot 79:1382–1388

    Google Scholar 

  • Holsinger KE (2000) Reproductive systems and evolution in vascular plants. PNAS 97:7037–7042

    CAS  PubMed  Google Scholar 

  • Ishii HS, Sakai S (2002) Temporal variation in flower display size and individual floral sex allocation in racemes of Narthecium asiaticus (Liliaceae). Am J Bot 89:441–446

    PubMed  Google Scholar 

  • Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Boulder, CO, USA

    Google Scholar 

  • Larson BMH, Barrett CH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Google Scholar 

  • Leuck EE, Miller JM (1982) Pollination biology and chemotaxonomy of the Echinocereus viridiflorus complex (Cactaceae). Am J Bot 69:1669–1672

    CAS  Google Scholar 

  • Liao W, Harder LD (2014) Consequences of multiple inflorescences and clonality for pollinator behavior and plant mating. Am Nat 184:580–592

    PubMed  Google Scholar 

  • Mandujano MC, Golubov J (2000) Opuntia bradtiana en la zona calcárea del Bolsón de Mapimí México. Cact Suc Mex 45:66–68

    Google Scholar 

  • Mandujano MC, Montaña C, Eguiarte LE (1996) Reproductive ecology and inbreeding depression in Opuntia rastrera (Cactaceae) in Chihuahuan Desert: why are sexually derived recruitments so rare? Am J Bot 83:63–70

    Google Scholar 

  • Mandujano MC, Carrillo-Angeles IG, Martínez-Peralta C et al (2010) Reproductive biology of Cactaceae. In: Ramawat KG (ed) Desert plants-biology and biotechnology. Springer, Berlin, Germany, pp 197–230

    Google Scholar 

  • Marsh PC (1984) Biota of Cuatro Ciénegas, Coahuila, México: Preface. JANAS 19:1–2

    Google Scholar 

  • Martínez-Peralta C, Márquez-Guzmán J, Mandujano MC (2014) How common is self-incompatibility across species of the herkogamous genus Ariocarpus? Am J Bot 101(3):1–9

    Google Scholar 

  • Martínez-Ávalos JG, Martínez-Gallegos R, Guerra-Pérez A, Torres Castillo JA, et al. (2020). Diversity and distribution of cacti species in the Cuatro Ciénegas basin. In: Mandujano MC, Pisanty I, Eguiarte L (eds.) Plant diversity and Ecology in the Chihuahuan desert. Springer International, Cham, Switzerland

    Google Scholar 

  • McFarland JD, Kevan PG, Lane MA (1989) Pollination biology of Opuntia imbricata (Cactaceae) in southern Colorado. Can J Bot 67:24–28

    Google Scholar 

  • McIntosh ME (2005) Pollination of two species of Ferocactus: interactions between cactus-specialist bees and their host plants. Funct Ecol 19:727–734

    Google Scholar 

  • Michener CD, McGinely RJ, Danforth BN (1994) The bee genera of north and Central America (Hymenoptera: Apoidea). Smithsonian Institution Press, Washington, DC, USA and London, UK

    Google Scholar 

  • Montiel González C, Bautista F, Delgado C, García-Oliva F (2018) The climate of Cuatro Ciénegas Basin: drivers and temporal patterns. In: Souza V et al (eds) Cuatro Ciénegas Ecology, Natural History and Microbiology, Cuatro Ciénegas Basin: an endangered Hyperdiverse oasis. Springer, Cham, Switzerland

    Google Scholar 

  • Nagy ES, Strong L, Galloway LF (1999) Contribution of delayed autogamous selfing to reproductive success in mountain Laurel, Kalmia latifolia (Ericaceae). Am Midl Nat 142:39–46

    Google Scholar 

  • Nassar JM, Ramirez N, Linares O (1997) Comparative pollination biology of Venezuelan columnar cacti and the role of nectar-feeding bats in their sexual reproduction. Am J Bot 4:918–927

    Google Scholar 

  • Neff JL, Simpson BB, Dorr LJ (1982) The nesting biology of Diadasia afflicta Cress. (Hymenoptera: Anthophoridae). J Kansas Entomol Soc 53:499–518

    Google Scholar 

  • Negrón-Ortiz V (1998) Reproductive biology of a rare cactus, Opuntia spinosissima (Cactaceae), in the Florida keys: why is seed set very low? Sex Plant Reprod 11:208–212

    Google Scholar 

  • Nicolson SW (2007) Nectar consumers. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, Netherlands, pp 289–342

    Google Scholar 

  • Ordway E (1987) The life history of Diadasia rinconis Cockerell (Hymenoptera:Anthophoridae). J Kansas Entomol Soc 60:15–24

    Google Scholar 

  • Palleiro N, Mandujano MC, Golubov J (2006) Aborted fruits of Opuntia microdasys (Cactaceae): insurance against reproductive failure. Am J Bot 93(4):505–511

    CAS  PubMed  Google Scholar 

  • Pimienta-Barrios E, Del Castillo RF (2002) Reproductive biology. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, Berkeley, CA, USA, pp 75–90

    Google Scholar 

  • Piña RH (2000) Ecología reproductiva de Ferocactus robustus en el Valle de Zapotitlán Salinas, Puebla. MSc diss., ENCB Instituto Politécnico Nacional, México, DF, Mexico

    Google Scholar 

  • Piña H, Montaña C, Mandujano MC (2007) Fruit abortion in the Chihuahuan-desert endemic cactus Opuntia microdasys. Plant Ecol 193:305–313

    Google Scholar 

  • Pinkava D (1984) Vegetation and floral of the bolson of Cuatro Cienegas region, Coahuila, México: IV. Summary, endemism and corrected catalogue. JANAS 19:23–47

    Google Scholar 

  • Pinkava D (2002) On the evolution of continental North American opuntias. Succulent Plant Research 6. David Hunt, Sherborne, UK

    Google Scholar 

  • Rebman JP (2001) Las suculentas del Islote Toro, Baja California, México. Cact Suc Mex 46:52–55

    Google Scholar 

  • Ren MX, Tang JY (2012) Up and down: stamen movements in Rutagraveolens (Rutaceae) enhance both outcrossing and delayed selfing. Annals of Botany 110:1017–1025. https://doi.org/10.1093/aob/mcs181

  • Reyes-Agüero JA, Aguirre JR, Valiente-Banuet A (2006) Reproductive biology of Opuntia: a review. J Arid Environ 64:549–585

    Google Scholar 

  • Rosas Barrera MD, Golubov J, Pisanty I, Mandujano MC (2020) Effect of reproductive modes on the population dynamics of an endemic cactus from Cuatro Ciénegas In: Mandujano MC, Pisanty I, Eguiarte LE (eds) Plant diversity and Ecology in the Chihuahuan Desert. Springer International, Cham, Switzerland

    Google Scholar 

  • Ross R (1981) Chromosome count, cytology and reproduction in the Cactaceae. Am J Bot 68:463–470

    Google Scholar 

  • Rowley GD (1980) Pollination syndromes and cactus taxonomy. Cact Succ J (Great Britain) 42:95–98

    Google Scholar 

  • SAS Institute (1995) JMP statistics and graphics guide. SAS Institute, Cary, NC, USA

    Google Scholar 

  • Schlindwein C, Wittman D (1997) Stamen movements in flowers of Opuntia (Cactaceae) favour oligolectic pollinators. Plant Syst Evol 204:179–193

    Google Scholar 

  • Schlising RA (1972) Foraging and nest provisioning behavior of the oligolectic bee, Diadasia bituberculata (Hymenoptera: Anthophoridae). Pan-Pac Entomol 48:175–188

    Google Scholar 

  • Simpson BB, Neff JL (1983) Pollination ecology in the arid southwest. Aliso 11:417–440

    Google Scholar 

  • Snow AA, Spira TP, Simpson R, Klips RA (1996) The ecology of geitonogamous pollination. In: Lloyd DG, Barrett SCH (eds) Floral biology studies on floral evolution in animal – pollinated plants. Chapman & Hall, Toronto, Canada, pp 191–216

    Google Scholar 

  • Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Ann Rev Ecol Syst 12:253–279

    Google Scholar 

  • Sutherland S (1987) Why hermaphroditic plants produce many more flowers than fruits: experimental tests with Agave mckelveyana. Evolution 41(4):750–759

    PubMed  Google Scholar 

  • Trujillo-Argueta S, González-Espinosa M (1991) Hibridización, aislamiento reproductivo y formas de reproducción en Opuntia spp. Agrociencia 1:39–58

    Google Scholar 

  • Valiente-Banuet A, Rojas-Martínez A, Casas A et al (1997) Pollination biology of two winter-blooming giant columnar cacti in the Tehuacan Valley, Central Mexico. J Arid Environ 37:331–341

    Google Scholar 

  • Wallace RS, Gibson AC (2002) Evolution and systematics. In: Nobel PS (ed) Cacti: biology and uses, Berkeley, CA, pp 1–21

    Google Scholar 

  • Wyatt R (1983) Pollinator-plant interactions and the evolution of breeding systems. In: Real L (ed) Pollination biology. Academic Press, New York, pp 51–95

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice-Hall Inc, New Jersey

    Google Scholar 

Download references

Acknowledgments

Jordan Golubov, Luis E. Eguiarte, and Francisco Molina-Freaner for comments on previous versions of the chapter. Financial support of project IN205500 PAPIIT-DGPA UNAM to MC Mandujano and PRONATURA provided free stay at La Becerra, Cuatro Ciénegas, during our field trips. Susana Moncada and personnel from the Area de protección de Flora y Fauna Cuatrocienegas provided logistic support. We appreciate the help during field work of Manuel Rosas, Gisela Aguilar Morales and in memoriam of our dearest friend Dolores Rosas Barrera (2018). The first author thanks the help at different stages of the work to M.Sc. Daniel Cervantes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María C. Mandujano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plasencia-López, L., Rojas-Aréchiga, M., Mandujano, M.C. (2020). Reproductive Biology of Grusonia bradtiana (Cactaceae): A Dominant Species and Endemic Clonal Cactus from Cuatro Ciénegas Basin and Contiguous Areas in the Chihuahuan Desert. In: Mandujano, M., Pisanty, I., Eguiarte, L. (eds) Plant Diversity and Ecology in the Chihuahuan Desert. Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis. Springer, Cham. https://doi.org/10.1007/978-3-030-44963-6_5

Download citation

Publish with us

Policies and ethics