Catnip (Nepeta cataria L.): Recent Advances in Botany, Horticulture and Production

Part of the Medicinal and Aromatic Plants of the World book series (MAPW, volume 6)


Catnip (Nepeta cataria L.), a popular aromatic herb used as a traditional medicine is more widely recognized for its use in the pet toy industry due to the behavioral effects it elicits on cats and other felids. A major interest in catnip is also due to its repellent activity against arthropods. Essential oil of catnip is an effective repellent against several species of mosquitoes, flies, ticks, mites, and other disease vectors, with results comparable to DEET. Both the repellency to arthropods and the characteristic effects on cats are mainly attributed to nepetalactone, a bicyclic oxygenated monoterpene in the essential oil of catnip. While catnip is grown as a garden herb and in the open field for dried biomass and essential oil, the lack of improved genetic materials makes it difficult for North American growers to expand production and ensure adequate product supply. The present chapter provides an overview of the recent advances in breeding, biochemistry, production systems, biological activities and potential new uses of N. cataria and other Nepeta species in North America.


Nepetalactones Terpenes Essential Oil Insect Repellent Arthropod Repellent 



We thank the New Jersey Farm Bureau, the New Jersey Agricultural Experiment Station Project NJ12158, the New Jersey Health Foundation and the Deployed Warfighter Protection (DWFP) Program in support of the research project, War FighterProtection from Arthropods Utilizing Naturally Sourced Repellents (Grant W911QY1910007) for their support of our research on Nepeta spp. We also recognize the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) (DOC_PLENO/ proc. n° 88881.129327/2016-01) for providing a Graduate Student Fellowship to the senior author (E. Gomes) as this work is part of his dissertation studies.


  1. Adiguzel A, Ozer H, Sokmen M, Gulluce M, Sokmen A, Kilic H, Sahin F, Baris O (2009) Antimicrobial and Antioxidant Activity of the Essential Oil and Methanol Extract of Nepeta cataria. Pol J Microbiol 58:69–76PubMedGoogle Scholar
  2. Agrian Database (2019) Herbicide Catnip. Retrieved October 7, 2019, from
  3. Aldrich JR, Chauhan K, Zhang QH (2016) Pharmacophagy in green lacewings (Neuroptera: Chrysopidae: Chrysopa spp.)? PeerJ 4:e1564PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alfieri SA Jr, Langdon KR, Wehlburg C, Kimbrough JW (1984) Index of plant diseases in Florida. Florida Department of Agriculture & Consumer Services, Division of Plant Industry, TallahasseeGoogle Scholar
  5. Al-Gabbiesh A, Kleinwächter M, Selmar D (2015) Influencing the contents of secondary metabolites in spice and medicinal plants by deliberately applying drought stress during their cultivation. Jordan J Biol Sci 147:1–10Google Scholar
  6. Amano K (1986) Host range and geographical distribution of the powdery mildew fungi. Japan Science Society Press, TokyoGoogle Scholar
  7. Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490PubMedCrossRefGoogle Scholar
  8. Anderson TA, Coats JR (1995) Screening rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor. J Environ Sci Health Part B 30(4):473–484CrossRefGoogle Scholar
  9. Angelova V (2012) Potential of some medicinal and aromatic plants for phytoremediation of soils contaminated with heavy metals. Agrarni Nauki 4(11):61–66Google Scholar
  10. Aničić N, Matekalo D, Skorić M, Pećinar I, Brkušanin M, Živković JN, Mišić D (2018) Trichome-specific and developmentally regulated biosynthesis of nepetalactones in leaves of cultivated Nepeta rtanjensis plants. Ind Crop Prod 117:347–358CrossRefGoogle Scholar
  11. Asgari M, Nasiri M, Ashrafe Jafari A, Flah Hoseini L (2015) Investigation of chilling effects on characteristics of seed germination, vigor and seedling growth of Nepeta spp. J Rangeland Sci 5:313–324Google Scholar
  12. Augé RM, Stodola AJ, Moore JL, Klingeman WE, Duan X (2003) Comparative dehydration tolerance of foliage of several ornamental crops. Sci Hortic 98:511–516CrossRefGoogle Scholar
  13. Aydin S, Beis R, Öztürk Y, Hüsnü K, Baser C (1998) Nepetalactone: a new opioid analgesic from Nepeta caesarea Boiss. J Pharm Pharmacol 50(7):813–817PubMedCrossRefGoogle Scholar
  14. Bandh SA, Kamili AN, Ganai BA, Lone BA, Saleem S (2011) Evaluation of antimicrobial activity of aqueous extracts of Nepeta cataria. J Pharm Res 4:3141–3142Google Scholar
  15. Baranauskiene R, Venskutonis RP, Demyttenaere JC (2003) Sensory and instrumental evaluation of catnip (Nepeta cataria L.) aroma. J Agric Food Chem 51(13):3840–3848PubMedCrossRefGoogle Scholar
  16. Bellesia F, Pagnoni UM, Trave R, Andreetti GD, Bocelli G, Sgarabotto P (1979) Synthesis and molecular structures of (1S) -cis, cis-iridolactones. J Chem Soc Perkin Trans 2:1341–1346CrossRefGoogle Scholar
  17. Bernardi MM, Kirsten TB, Salzgeber SA, Ricci EL, Romoff P, Guilardi Lago JH, Lourenço LM (2010) Antidepressant-like effects of an apolar extract and chow enriched with Nepeta cataria (catnip) in mice. Psychol Neurosci 3(2):251–258CrossRefGoogle Scholar
  18. Bernardi MM, Kirsten TB, Lago JHG, Giovani TM, de Oliveira Massoco C (2011) Nepeta cataria L. var. citriodora (Becker) increases penile erection in rats. J Ethnopharmacol 137(3):1318–1322PubMedCrossRefGoogle Scholar
  19. Bernier UR, Furman KD, Kline DL, Allan SA, Barnard DR (2005) Comparison of contact and spatial repellency of catnip oil and N, N-diethyl-3-methylbenzamide (DEET) against mosquitoes. J Med Entomol 42(3):306–311PubMedGoogle Scholar
  20. Birkett MA, Hassanali A, Hoglund S, Pettersson J, Pickett JA (2011) Repellent activity of catmint, Nepeta cataria, and iridoid nepetalactone isomers against Afro-tropical mosquitoes, ixodid ticks and red poultry mites. Phytochemistry 72:109–114PubMedCrossRefGoogle Scholar
  21. Boerema GH, De Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma identification manual: differentiation of specific and infra-specific taxa in culture. CABI Publishing, WallingfordCrossRefGoogle Scholar
  22. Bol S, Caspers J, Buckingham L, Anderson-Shelton GD, Ridgway C, Buffington CT, Bunnik EM (2017) Responsiveness of cats (Felidae) to silver vine (Actinidia polygama), Tatarian honeysuckle (Lonicera tatarica), valerian (Valeriana officinalis) and catnip (Nepeta cataria). BMC Vet Res 13:70PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bourrel C, Perineau F, Michel G, Bessiere JM (1993) Catnip (Nepeta cataria L.) essential oil: analysis of chemical constituents, bacteriostatic and fungistatic properties. J Essent Oil Res 5(2):159–167CrossRefGoogle Scholar
  24. Braun U (1987) A monograph of the Erysiphales (powdery mildews). Beihefte zur Nova Hedwigia 89:1–700Google Scholar
  25. Braun U (1995) The Powdery mildews (Erysiphales) of Europe. Gustav Fischer Verlag, JenaGoogle Scholar
  26. Carrubba A (2017) Weeds and weeding effects on medicinal herbs. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer, Cham, pp 295–327CrossRefGoogle Scholar
  27. Cash EK (1953) A record of the fungi named by J.B. Ellis (Part 2). USDA National Agricultural Library, BeltsvilleGoogle Scholar
  28. Cash EK (1954) A record of the fungi named by J.B. Ellis (Part 3). USDA National Agricultural Library, BeltsvilleGoogle Scholar
  29. Chalchat JC, Lamy J (1997) Chemical composition of the essential oil isolated from wild catnip Nepeta cataria L. cv. citriodora from the Drôme region of France. J Essent Oil Res 9(5):527–532CrossRefGoogle Scholar
  30. Chen Q, Hou LW, Duan WJ, Crous PW, Cai L (2017) Didymellaceae revisited. Stud Mycol 87:105–159PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chittenden FH (1919) Farmers bulletin 1007: Control of the onion thrips. United States Department of Agriculture, Washington, DCGoogle Scholar
  32. Chupp C (1954) Monograph of the fungus genus Cercospora. Published by the Author, IthacaGoogle Scholar
  33. Clapperton BK, Eason CT, Weston RJ, Woolhouse AD, Morgan DR (1994) Development and testing of attractants for feral cats, Felis catus L. Wildl Res 21:389–399CrossRefGoogle Scholar
  34. Claßen-Bockhoff R, Wester P, Tweraser E (2003) The staminal lever mechanism in Salvia L. (Lamiaceae)-a review. Plant Biol 5(01):33–41CrossRefGoogle Scholar
  35. Clevenger JF (1928) Apparatus for the determination of volatile oil. J Am Pharm Assoc 17(4):345–349Google Scholar
  36. Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10 hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508(2):215–220PubMedCrossRefGoogle Scholar
  37. Croteau R, Gershenzon J (1994) Genetic control of monoterpene biosynthesis in mints (Mentha: Lamiaceae). In: Genetic engineering of plant secondary metabolism. Springer, Boston, pp 193–229CrossRefGoogle Scholar
  38. Daskalova T (2004) Histological structure of the microsporangia, microsporogenesis and development of the male gametophyte in Nepeta cataria (Lamiaceae). Phytologia Balcanica 10(2–3):241–246Google Scholar
  39. Davino S, Panno S, Rangel EA, Davino M, Bellardi MG, Rubio L (2012) Population genetics of cucumber mosaic virus infecting medicinal, aromatic and ornamental plants from northern Italy. Arch Virol 157(4):739–745PubMedCrossRefGoogle Scholar
  40. De Gruyter J, Boerema GH, Van Der HA (2002) Contributions towards a monograph of Phoma (Coelomycetes) – VI. 2. Section Phyllostictoides: Outline of its taxa. Persoonia 18:1–53Google Scholar
  41. De Pooter HL, Nicolai B, De Laet J, De Buyck LF, Schamp NM, Goetghebeur P (1988) The essential oils of five Nepeta species. A preliminary evaluation of their use in chemotaxonomy by cluster analysis. Flavour Fragr J 3(4):155–159CrossRefGoogle Scholar
  42. Dikova B (2009) Establishment of some viruses-Polyphagues on economically important essential oil-bearing and medicinal plants in Bulgaria. Biotechnol Biotechnol Equip 23(Sup1):80–84CrossRefGoogle Scholar
  43. Dikova B (2011) Tomato spotted wilt virus on some medicinal and essential oil-bearing plants in Bulgaria. Bulgarian J Agric Sci 17(3):306–313Google Scholar
  44. Dmitrovic S, Skoric M, Boljevic J, Anicic N, Bozic D, Misic D, Opsenica D (2016) Elicitation effects of a synthetic 1, 2, 4, 5-tetraoxane and a 2, 5-diphenylthiophene in shoot cultures of two Nepeta species. J Serb Chem Soc 81(9):999–1012CrossRefGoogle Scholar
  45. Duppong LM, Delate K, Liebman M, Horton R, Romero F, Kraus G, Petrich J, Chowdbury PK (2004) The effect of natural mulches on crop performance, weed suppression and biochemical constituents of catnip and St. John’s wort Crop Sci 44(3):861–869PubMedCrossRefGoogle Scholar
  46. Duda SC, Mărghitaş LA, Dezmirean DS, Bobiş O, Duda MM (2015a) Nepeta cataria: medicinal plant of interest in phytotherapy and bee keeping. Hop Med Plants 23:34–38Google Scholar
  47. Duda SC, Mărghitaş LA, Dezmirean DS, Duda M, Mărgăoan R, Bobiş O (2015b) Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: effect of harvest time and plant species. Ind Crop Prod 77:499–507CrossRefGoogle Scholar
  48. Dudka IO, Heluta VP, Tykhonenko YY, Andrianova TV, Hayova VP, Prydiuk MP, Dzhagan VV, Isikov VP (2004) Fungi of the Crimean Peninsula (Translated from Russian). M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, KievGoogle Scholar
  49. Duke JA (1976) Perennial weeds as indicators of annual climatic parameters. Agric Meteorol 16(2):291–294CrossRefGoogle Scholar
  50. Eisenbraun EJ, Browne CE, Irvin-Willis RL, McGurk DJ, Eliel EL, Harris DL (1980) Structure and stereochemistry of 4aα, 7α, 7aβ-nepetalactone from Nepeta mussini and its relationship to the 4aα, 7α, 7aα-nepetalactone and 4aβ, 7α, 7aβ-nepetalactone from Nepeta cataria. J Org Chem 45(19):3811–3814CrossRefGoogle Scholar
  51. El Gazzar A, Watson L (1970) Some economic implications of the taxonomy of Labiatae essential oils and rusts. New Phytol 69(2):487–492CrossRefGoogle Scholar
  52. Eom SH, Senesac AF, Tsontakis-Bradley I, Weston LA (2005) Evaluation of herbaceous perennials as weed suppressive groundcovers for use along roadsides or in landscapes. J Environ Hortic 23(4):198–203CrossRefGoogle Scholar
  53. Espín-Iturbe LT, Yañez BAL, García AC, Canseco-Sedano R, Vázquez-Hernández M, Coria-Avila GA (2017) Active and passive responses to catnip (Nepeta cataria) are affected by age, sex and early gonadectomy in male and female cats. Behav Process 142:110–115CrossRefGoogle Scholar
  54. Falk CL, Voorthuizen HV, Wall MM, Guldan SJ, Martin CA, Kleitz KM (2000) An economic analysis of transplanting versus direct seeding of selected medicinal herbs in New Mexico. J Herbs Spices Med Plants 7(4):15–29CrossRefGoogle Scholar
  55. Farr DF, Rossman AY (2019) Fungal databases, U.S. National Fungus Collections, ARS, USDA. Retrieved September 25, 2019, from
  56. Feaster JE, Scialdone MA, Todd RG, Gonzalez YI, Foster JP, Hallahan DL (2009) Dihydronepetalactones deter feeding activity by mosquitoes, stable flies, and deer ticks. J Med Entomol 46(4):832–840PubMedCrossRefGoogle Scholar
  57. Ferguson JM, Weeks WW, Fike WT (1990) Production of catnip in North Carolina. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Oregon, pp 527–528Google Scholar
  58. Filho JLS, Blank AF, Alves PB, Ehlert PA, Melo AS, Cavalcanti SC, Silva-Mann R (2006) Influence of the harvesting time, temperature and drying period on basil (Ocimum basilicum L.) essential oil. Rev Bras 16(1):24–30Google Scholar
  59. Firoozabadi A, Zarshenas MM, Salehi A, Jahanbin S, Mohagheghzadeh A (2015) Effectiveness of Cuscuta planiflora Ten. and Nepeta menthoides Boiss. & Buhse in major depression: a triple-blind randomized controlled trial study. J Evid Based Complement Alternat Med 20(2):94–97CrossRefGoogle Scholar
  60. Formisano C, Rigano D, Senatore F (2011) Chemical constituents and biological activities of Nepeta species. Chem Biodivers 8:1783–1818PubMedCrossRefGoogle Scholar
  61. Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492:138–142PubMedCrossRefGoogle Scholar
  62. Gilani AH, Shah AJ, Zubair A, Khalid S, Kiani J, Ahmed A, Ahmad VU (2009) Chemical composition and mechanisms underlying the spasmolytic and bronchodilatory properties of the essential oil of Nepeta cataria L. J Ethnopharmacol 121(3):405–411PubMedCrossRefGoogle Scholar
  63. Ginns JH (1986) Compendium of plant disease and decay fungi in Canada 1960–1980. Canadian Government Publishing Centre, OttawaCrossRefGoogle Scholar
  64. Gonzalez Y, Jackson SC, Manzer LE (2012) U.S. Patent No. 8,329,229. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  65. Greene HC (1944) Notes on Wisconsin parasitic fungi V. Wis Acad Sci 36:225–268Google Scholar
  66. Greene HC (1945) Notes on Wisconsin parasitic fungi VII. Am Midl Nat 34(1):258–270CrossRefGoogle Scholar
  67. Halbert SE, Rung A, Ziesk DC, Gill RJ (2009) A leafhopper pest of plants in the mint family, Eupteryx Decemnotata Rey, Ligurian Leafhopper, New To North America and intercepted in Florida on plants from California (PDF file). Retrieved September 26, 2019, from,_Ligurian_Leafhopper.pdf
  68. Hallahan DL, Dawson GW, West JM, Wallsgrove RM (1992) Cytochrome P-450 catalysed monoterpene hydroxylation in Nepeta mussinii. Plant Physiol Biochem 30(4):435–443Google Scholar
  69. Hallahan DL, West JM, Smiley DW, Pickett JA (1998) Nepetalactol oxidoreductase in trichomes of the catmint Nepeta racemosa. Phytochemistry 48(3):421–427CrossRefGoogle Scholar
  70. Hegnauer (ed) (1989) Chemotaxonomie der Pflanzen. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften. Birkhäuser, BaselGoogle Scholar
  71. Herron S (2003) Catnip, Nepeta cataria, a morphological comparison of mutant and wild type specimens to gain an ethnobotanical perspective. Econ Bot 57:135–142CrossRefGoogle Scholar
  72. Heuskin S, Godin B, Leroy P, Capella Q, Wathelet JP, Verheggen F et al (2009) Fast gas chromatography characterisation of purified semiochemicals from essential oils of Matricaria chamomilla L. (Asteraceae) and Nepeta cataria L. (Lamiaceae). J Chromatogr A 1216:2768–2775PubMedCrossRefGoogle Scholar
  73. Hornok L, Domokos J, Hethelyi E (1992) Effect of harvesting time on the production of Nepeta cataria var. citriodora Balb. Acta Hortic 306:290–295CrossRefGoogle Scholar
  74. Humphreys K (2017) Avoiding globalization of the prescription opioid epidemic. Lancet 390:437–439PubMedPubMedCentralCrossRefGoogle Scholar
  75. IBISWorld (2019) Insect repellent manufacturing. Retrieved October 7, 2019 from
  76. Ibrahim ME, El-Sawi SA, Ibrahim FM (2017) Nepeta cataria L, one of the promising aromatic plants in Egypt: seed germination, growth and essential oil production. J Mat Environ Sci 8:1990–1995Google Scholar
  77. Iijima Y, Gang DR, Fridman E, Lewinsohn E, Pichersky E (2004) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134:370–379PubMedPubMedCentralCrossRefGoogle Scholar
  78. IR-4 Food Crop Database (2019) Herbicide Catnip. Retrieved October 7, 2019, from
  79. Isayenkov SV, Maathuis FJ (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:1–11CrossRefGoogle Scholar
  80. ITIS Report (2019) Nepeta cataria L. (n.d.). Retrieved October 5, 2019, from
  81. Jadczak P, Pizoń K (2017) Identification of taxa of microscopic fungi occurring on selected herbal plants and possible methods of their elimination. World Sci News 69:1–17Google Scholar
  82. Jamal A, Naeemullah M, Masood MS, Zakria M, Tahira R, Iqbal U, Iqbal SM (2011) Screening of mint germplasm under field and glasshouse conditions. Mycopathologia 9:29–32Google Scholar
  83. Jamzad Z, Ingrouille M, Simmonds MS (2003) Three new species of Nepeta (Lamiaceae) from Iran. Taxon 52(1):93–98CrossRefGoogle Scholar
  84. Javidnia K, Mehdipour AR, Hemmateenejad B, Rezazadeh SR, Soltani M, Khosravi AR, Miri R (2011) Nepetalactones as chemotaxonomic markers in the essential oils of Nepeta species. Chem Nat Compd 47(5):843–847CrossRefGoogle Scholar
  85. Kaiser C, Ernst M (2019) Catnip. Retrieved August 17, 2019, from
  86. Kalpoutzakis E, Aligiannis N, Mentis A, Mitaku S, Charvala C (2001) Composition of the essential oil of two Nepeta species and in vitro evaluation of their activity against Helicobacter pylori. Planta Med 67:880–883PubMedCrossRefGoogle Scholar
  87. Kashyap D, Tuli HS, Sharma AK (2016) Ursolic acid (UA): a metabolite with promising therapeutic potential. Life Sci 146:201–213PubMedCrossRefGoogle Scholar
  88. Khanzada SA, Naeemullah M, Munir A, Iftikhar S, Masood S (2012) Plant parasitic nematodes associated with different Mentha species. Pak J Nematol 30(1):21–26Google Scholar
  89. Kleitz KM, Wall MM, Falk CL, Martin CA, Remmenga MD, Guldan SJ (2008) Stand establishment and yield potential of organically grown seeded and transplanted medicinal herbs. Hortic Technol 18(1):116–121Google Scholar
  90. Klimek B, Modnicki D (2005) Terpenoids and sterols from Nepeta cataria L. var. citriodora (Lamiaceae). Acta Pol Pharm 62(3):231–235PubMedGoogle Scholar
  91. Kohl LM (2011) Astronauts of the nematode world: an aerial view of foliar nematode biology, epidemiology, and host range. Retrieved September 26, from
  92. Koike ST, Azad HR, Cooksey DA (2001) Xanthomonas leaf spot of catnip: a new disease caused by a pathovar of Xanthomonas campestris. Plant Dis 85(11):1157–1159PubMedCrossRefGoogle Scholar
  93. Kolalite MR (1998) Comparative analysis of ultrastructure of glandular trichomes in two Nepeta cataria chemotypes (N. cataria and N. cataria var. citriodora). Nord J Bot 18(5):589–598CrossRefGoogle Scholar
  94. Kooiman P (1972) The occurrence of iridoid glycosides in the Labiatae. Acta Botanica Neerlandica 21(4):417–427CrossRefGoogle Scholar
  95. Kuzuyama T, Seto H (2012) Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proce Jpn Acad Ser B Phys Biol Sci 88(3):41–52CrossRefGoogle Scholar
  96. Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, New YorkCrossRefGoogle Scholar
  97. Lee SY, Lee CY, Eom SH, Kim YK, Park NI, Park SU (2010) Rosmarinic acid production from transformed root cultures of Nepeta cataria L. Sci Res Essays 5(10):1122–1126Google Scholar
  98. Lewis WH, Elvin-Lewis MP (1982) Medical botany: plants affecting man’s health. Wiley, New YorkGoogle Scholar
  99. Lichman BR, Kamileen MO, Titchiner GR, Saalbach G, Stevenson CE, Lawson DM, O’Connor SE (2019) Uncoupled activation and cyclization in catmint reductive terpenoid biosynthesis. Nat Chem Biol 15(1):71–79PubMedCrossRefGoogle Scholar
  100. Linnaeus C (1800) Species plantarum, vol 4. Impensis GC Nauk, BerlinGoogle Scholar
  101. Louey J, Petersen N, Salotti D, Shaeffer H, James KD (2001) Oil of catnip by supercritical fluid extraction. Pap Am Chem Soc 221:215–221Google Scholar
  102. Lowery DT, Triapitsyn SV, Judd GJ (2007) Leafhopper host plant associations for Anagrus parasitoids (Hymenoptera: Mymaridae) in the Okanagan Valley, British Columbia. J Entomol Soc BC 104:9–16Google Scholar
  103. Majewski T (1979) Fungi of Poland (Mycota), basidiomycetes, uredinles II, vol 11 (Translated from Polish). State Science Public House, KrakówGoogle Scholar
  104. Malizia RA, Molli JS, Cardell DA, Retamar JA (1996) Volatile consituents of the essential oil of Nepeta cataria L. grown in Cordoba Province (Argentina). J Essent Oil Res:565–567Google Scholar
  105. Manukyan AE (2005) Optimum nutrition for biosynthesis of pharmaceutical compounds in celandine and catmint under outside hydroponic conditions. J Plant Nutr 28(5):751–761CrossRefGoogle Scholar
  106. Manukyan A (2011a) Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production: I. drought stress. Med Aromat Plant Sci Biotechnol 5(2):119–125Google Scholar
  107. Manukyan A (2011b) Effect of growing factors on productivity and quality of lemon catmint, lemon balm and sage under soilless greenhouse production: II. Nitrogen stress. Med Aromat Plant Sci Biotechnol 5(2):126–132Google Scholar
  108. Manukyan AE (2013) Effects of PAR and UV-B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions. Photochem Photobiol 89(2):406–414PubMedCrossRefGoogle Scholar
  109. Manukyan AE, Schnitzler WH (2006) Influence of air temperature on productivity and quality of some medicinal plants under controlled environment conditions. Eur J Hortic Sci 71(1):26–35Google Scholar
  110. Marmy RMS, Norulakmal NH, Faridah G (2018) Optimization of Nepeta cataria essential oil extraction yield by ultrasonic-soxhlet extraction method using response surface methodology. IOP Conf Ser Mater Sci Eng 440:1–10Google Scholar
  111. Martin E, Altinordu F, Özcan T, Dirmenci T (2013) Karyomorphological study in Nepeta viscida Boiss.(Lamiaceae) from Turkey. J Appl Biol Sci 7(3): 26–30. E-ISSN: 2146-0108Google Scholar
  112. Massoco CO, Silva MR, Gorniak SL, Spinosa MS, Bernardi MM (1995) Behavioral effects of acute and long-term administration of catnip (Nepeta cataria) in mice. Vet Hum Toxicol 37(6):530–533PubMedGoogle Scholar
  113. McDonough MJ, Gerace D, Ascerno ME (1999) Western flower thrips feeding scars and tospovirus lesions on petunia indicator plants. Retrieved September 26, from
  114. McElvain SM, Eisenbraun EJ (1957) The interconversion of nepetalic acid and isoiridomyrmecin (iridolactone). J Org Chem 22:976–977CrossRefGoogle Scholar
  115. McElvain SM, Bright RD, Johnson PR (1941) The constituents of the volatile oil of catnip. I. Nepetalic acid, nepetalactone and related compounds. J Am Chem Soc 63:1558–1563CrossRefGoogle Scholar
  116. Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606PubMedPubMedCentralCrossRefGoogle Scholar
  117. Mihaylova D, Georgieva L, Pavlov A (2013) In Vitro antioxidant activity and phenolic composition of Nepeta cataria L. extracts. Int J Agric Sci Technol 1(4):74–79Google Scholar
  118. Mint Evolutionary Genomics Consortium (2018) Phylogenomic mining of the mints reveals multiple mechanisms contributing to the evolution of chemical diversity in Lamiaceae. Mol Plant 11(8):1084–1096CrossRefGoogle Scholar
  119. Missouri Botanical Garden (2019) Plant finder – Nepeta cataria. Retrieved April 24, 2019, from
  120. Modnicki D, Tokar M, Klimek B (2007) Flavonoids and phenolic acids of Nepeta cataria L. var. citriodora (Becker) Balb.(Lamiaceae). Acta Pol Pharm 64(3):247–252PubMedGoogle Scholar
  121. Moghaddam FM, Hosseini M (1996) Composition of the essential oil from Nepeta crassifolia Boiss. & Buhse. Flavour Fragr J 11:113–115CrossRefGoogle Scholar
  122. Mohamed HF, Mahmoud AA, Alatawi A, Hegazy MH, Astatkie T, Said-Al Ahl HA (2018) Growth and essential oil responses of Nepeta species to potassium humate and harvest time. Acta Physiol Plant 40:1–8CrossRefGoogle Scholar
  123. Mohammadi S, Saharkhiz MJ (2011) Changes in essential oil content and composition of catnip (Nepeta cataria L.) during different developmental stages. J Essent Oil Bearing Plants 14(4):396–400CrossRefGoogle Scholar
  124. Mohammadi S, Saharkhiz MJ, Javanmardi J (2017) Evaluation of interaction effects of spermidine and salinity on physiological and morphology trait of catnip (Nepeta cataria L.). Zeitschrift Fur Arznei-& Gewurzpflanzen 22(3):104–109Google Scholar
  125. Mohammadizad HA, Mehrafarin A, Naghdi Badi H (2017) Qualitative and quantitative evaluation of essential oil of Catnip (Nepeta cataria L.) under different drying conditions. J Med Plants 1(61):8–20Google Scholar
  126. Mountain Rose Herbs (2019) Mountain rose herbs: Catnip. Retrieved April 19, 2019, from
  127. Mułenko W, Majewski T, Ruszkiewicz-Michalska M (2008) A preliminary checklist of micromycetes in Poland. (Kraków W). Szafer Institute of Botany, Polish Academy of Sciences, PolandGoogle Scholar
  128. Nadda G (2013) Medicinal and aromatic crops as hosts of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). J Trop Asian Entomol 2:44–46Google Scholar
  129. Naghibi F, Mosaddegh M, Mohammadi MM, Ghorbani A (2010) Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. Iran J Pharm Res 4:63–79Google Scholar
  130. Nawab J, Khan S, Shah MT, Khan K, Huang Q, Ali R (2015) Quantification of heavy metals in mining affected soil and their bioaccumulation in native plant species. Int J Phytoremediation 17(9):801–813PubMedCrossRefGoogle Scholar
  131. Nickel H, Holzinger WE (2006) Rapid range expansion of Ligurian leafhopper, Eupteryx decemnotata Rey, 1891 (Hemiptera: Cicadellidae), a potential pest of garden and greenhouse herbs, in Europe. Russ Entomol J 15:295–301Google Scholar
  132. Nishad I, Srivastava AK, Saroj A, Babu BK, Samad A (2018) First report of root rot of Nepeta cataria caused by Macrophomina phaseolina in India. Plant Dis 102(11):2380CrossRefGoogle Scholar
  133. Pank F (1992) The influence of chemical weed control on quality characters of medicinal and aromatic plants. Acta Hortic 306:145–154CrossRefGoogle Scholar
  134. Park CH, Tannous P, Juliani HR, Wu QL, Sciarappa WJ, VanVranken R, Simon JE (2007) Catnip as a source of essential oils. Creating markets for economic development of new crops and new uses (ed: Whipkey A), pp 311–315Google Scholar
  135. Patience GS, Karirekinyana G, Galli F, Patience NA, Kubwabo C, Collin G, Boffito DC (2018) Sustainable manufacture of insect repellents derived from Nepeta cataria. Sci Rep 8:22–35CrossRefGoogle Scholar
  136. Payandeh M, Bordbar F, Mirtadzadini M, Khaniki GRB (2015) New chromosome counts for Nepeta (Lamiaceae) from flora of Iran. Biol Divers Conserv 8:70–73Google Scholar
  137. Peterson CJ, Coats J (2001) Insect repellents-past, present and future. Pestic Outlook 12:154–158CrossRefGoogle Scholar
  138. Peterson CJ, Coats JR (2011) Catnip essential oil and its nepetalactone isomers as repellents for mosquitoes. In: Paluch GE, Coats JR (eds) Recent developments in invertebrate repellents. American Chemical Society, Washington, DC, pp 59–65CrossRefGoogle Scholar
  139. Peterson CJ, Nemetz LT, Jones LM, Coats JR (2002) Behavioral activity of catnip (Lamiaceae) essential oil components to the German cockroach (Blattodea: Blattellidae). J Econ Entomol 95:377–380PubMedCrossRefGoogle Scholar
  140. Pobożniak M, Anna S (2011) Biodiversity of thrips species (Thysanoptera) on flowering herbs in Cracow, Poland. J Plant Prot Res 51(4):393–398CrossRefGoogle Scholar
  141. Polsomboon S, Grieco JP, Achee NL, Chauhan KR, Tanasinchayakul S, Pothikasikorn J, Chareonviriyaphap T (2008) Behavioral responses of catnip (Nepeta cataria) by two species of mosquitoes, Aedes aegypti and Anopheles harrisoni, in Thailand. J Am Mosq Control Assoc 24:513–520PubMedCrossRefGoogle Scholar
  142. Potashev K, Sharonova N, Breus I (2014) The use of cluster analysis for plant grouping by their tolerance to soil contamination with hydrocarbons at the germination stage. Sci Total Environ 485:71–82PubMedCrossRefGoogle Scholar
  143. Proestos C, Boziaris IS, Nychas GJE, Komaitis M (2006) Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chem 95:664–671CrossRefGoogle Scholar
  144. Rabbani M, Sajjadi SE, Mohammadi A (2008) Evaluation of the anxiolytic effect of Nepeta persica Boiss. in mice. eCAM 5:181–186PubMedGoogle Scholar
  145. Radulescu E, Negru A, Docea E (1973) Septoriozele din Romania. Editura Academiei Republicii Socialiste România, BucarestGoogle Scholar
  146. Raeburn D, Souness JE, Tomkinson A, Karlsson J-A (1993) Isozyme-selective cyclic nucleotide phosphodiesterase inhibitors: Biochemistry, pharmacology and therapeutic potential in asthma. Prog Drug Res 40:9–32PubMedGoogle Scholar
  147. Reichert WJ (2019) The phytochemical investigation, breeding and arthropod repellent efficacy of Nepeta cataria. Doctoral dissertation, Rutgers University-School of Graduate StudiesGoogle Scholar
  148. Reichert W, Park HC, Juliani HR, Simon JE (2016) ‘CR9’: a new highly aromatic catnip Nepeta cataria L. cultivar rich in Z, E-Nepetalactone. HortScience 51:588–591CrossRefGoogle Scholar
  149. Reichert W, Villani T, Pan MH, Ho CT, Simon JE, Wu QL (2018) Phytochemical analysis and anti-inflammatory activity of Nepeta cataria accessions. J Med Active Plants 7(1):19–27Google Scholar
  150. Reichert W, Ejercito J, Guda T, Dong X, Wu Q, Ray A, Simon JE (2019) Repellency assessment of Nepeta cataria essential oils and isolated nepetalactones on Aedes aegypti. Sci Rep 9(1):1524PubMedPubMedCentralCrossRefGoogle Scholar
  151. Rigano D, Arnold NA, Conforti F, Menichini F, Formisano C, Piozzi F, Senatore F (2011) Characterisation of the essential oil of Nepeta glomerata Montbret et Aucer ex Bentham from Lebanon and its biological activities. Nat Prod Res:614–626Google Scholar
  152. Rim JA, Jang EJ (2017) Effects of substrate and Rootone on the rooting of Mentha spicata, Mentha x piperita, and Nepeta cataria. J People Plants Environ 20(5):511–520CrossRefGoogle Scholar
  153. Rung A, Halbert SE, Ziesk DC, Gill RJ (2009) A leafhopper pest of plants in the mint family, Eupteryx dec emnotata Rey (Hemiptera: Auchenorrhyncha: Cicadellidae), Ligurian leafhopper, new to North America. Insecta Mundi 88:1–4Google Scholar
  154. Rusanov VA, Bulgakov TS (2008) Powdery mildew fungi of Rostov region. Mikol Fitopatol 42(4):314–322Google Scholar
  155. Saeidnia S, Gohari AR, Hadjiakhoondi A (2008) Trypanocidal activity of oil of the young leaves of Nepeta cataria L. obtained by solvent extraction. J Med Plants 1:54–57Google Scholar
  156. Saharkhiz MJ, Zadnour P, Kakouei F (2016) Essential oil analysis and phytotoxic activity of catnip (Nepeta cataria L.). Am J Essent Oils Nat Prod 4(1):40–45Google Scholar
  157. Said-Al Ahl HA, Sabra AS, Hegazy MH (2016) Salicylic acid improves growth and essential oil accumulation in two Nepeta cataria chemotypes under water stress conditions. Ital J Agrometeorol 21(1):25–36Google Scholar
  158. Said-Al Ahl H, Naguib NY, Hussein MS (2018) Evaluation growth and essential oil content of catmint and lemon catnip plants as new cultivated medicinal plants in Egypt. Ann Agric Sci 63:201–205CrossRefGoogle Scholar
  159. Salehi B, Valussi M, Jugran AK, Martorell M, Ramírez-Alarcón K, Stojanović-Radić ZZ, Setzer WN (2018) Nepeta species: From farm to food applications and phytotherapy. Trends Food Sci Technol 80:104–122CrossRefGoogle Scholar
  160. Schultz G, Simbro E, Belden J, Zhu J, Coats J (2004) Catnip, Nepeta cataria (Lamiales: Lamiaceae) – a closer look: seasonal occurrence of nepetalactone isomers and comparative repellency of three terpenoids to insects. Environ Entomol 33(6):1562–1569CrossRefGoogle Scholar
  161. Setzer WN (2016) Catnip essential oil: there is more to it than making your cat go crazy. Am J Essent Oils Nat Prod 4(4):12–15Google Scholar
  162. Sharma A, Cannoo DS (2013) Phytochemical composition of essential oils isolated from different species of genus Nepeta of Labiatae family: a review. Pharmacophore 4(6):181–211Google Scholar
  163. Sharonova N, Breus I (2012) Tolerance of cultivated and wild plants of different taxonomy to soil contamination by kerosene. Sci Total Environ 424:121–129PubMedCrossRefGoogle Scholar
  164. Shen D, Pan MH, Wu QL, Park CH, Juliani HR, Welch CR, Simon JE (2010) Identification of the anti-inflammatory bioactive compounds in oregano (Origanum spp.) and their simultaneous quantitation by LC/MS. J Agric Food Chem 58(12):7119–7125PubMedCrossRefGoogle Scholar
  165. Shen D, Pan MH, Wu QL, Park CH, Juliani HR, Ho CT, Simon JE (2011) A rapid LC/MS/MS method for the analysis of non-volatile anti-inflammatory agents from Mentha spp. J Food Science 76(6):900–908CrossRefGoogle Scholar
  166. Sherden NH, Lichman B, Caputi L, Zhao D, Kamileen MO, Buell CR, O’Connor SE (2018) Identification of iridoid synthases from Nepeta species: iridoid cyclization does not determine nepetalactone stereochemistry. Phytochemistry 145:48–56PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sih A, Baltus MS (1987) Patch size, pollinator behavior, and pollinator limitation in catnip. Ecology 68(6):1679–1690PubMedCrossRefGoogle Scholar
  168. Simon JE, Reichert W, Wu QL (2019) Catnip cultivar ‘CR3’. US Patent 10,512,231 B2, December 24, 2019Google Scholar
  169. Simpson MG (2010) Plant systematics. Academic, AmsterdamCrossRefGoogle Scholar
  170. Smitherman LC, Janisse J, Mathur A (2005) The use of folk remedies among children in an urban black community: remedies for fever, colic, and teething. Pediatrics 115:e297–e304PubMedCrossRefGoogle Scholar
  171. St. Hilaire R (2003) Propagation of catnip by terminal and single-node cuttings. J Environ Hortic 21(1):20–23CrossRefGoogle Scholar
  172. St. Hilaire R, Hockman AW, Chavez SM (2002) Propagation and irrigation regime affect the development of catnip. Acta Hortic 629:321–327Google Scholar
  173. Stimart DP (1986) Commercial micropropagation of florist flower crops. In: Tissue culture as a plant production system for horticultural crops. Springer, Dordrecht, pp 301–315CrossRefGoogle Scholar
  174. Süntar I, Nabavi SM, Barreca D, Fischer N, Efferth T (2018) Pharmacological and chemical features of Nepeta L. genus: Its importance as a therapeutic agent. Phytother Res 32(2):185–198PubMedCrossRefGoogle Scholar
  175. Suschke U, Sporer F, Schneele J, Geiss HK, Reichling J (2007) Antibacterial and cytotoxic activity of Nepeta cataria L., N. cataria var. citriodora (Beck.) Balb. and Melissa officinalis L. essential oils. Nat Prod Commun 2:1277–1286Google Scholar
  176. Taskova R, Mitova M, Evstatieva L, Ancev M, Peev D, Handjieva N, Popov S (1997) Iridoids, flavonoids and terpenoids as taxonomic markers in Lamiaceae, Scrophulariaceae and Rubiaceae. Bocconea 5(2):631–636Google Scholar
  177. Technavio. Global mosquito repellent market 2018–2022. Retrieved August 17, 2019 from
  178. Tisserat B, Vaughn SF (2004) Techniques to improve growth, morphogenesis and secondary metabolism responses from Lamiaceae species in vitro. Acta Hortic 629:333–340CrossRefGoogle Scholar
  179. Transparency Market Research (TMR). Catnip essential oil market – global industry analysis, size, share, growth, trends, and forecast 2017–2025. Retrieved August 17, 2019 from
  180. United States Department of Agriculture (USDA) (1960) Index of plant diseases in the United States. USDA, Washington, DCGoogle Scholar
  181. United States Department of Agriculture (USDA) (2019) Nepeta cataria L. Catnip. Retrieved August 17, 2019, from
  182. Waller GR, Price GH, Mitchell ED (1969) Feline attractant, cis, trans-nepetalactone: Metabolism in the domestic cat. Science 164(3885):1281–1282PubMedCrossRefGoogle Scholar
  183. Wang M, Cheng KW, Wu Q, Simon JE (2007) Quantification of nepetalactones in catnip (Nepeta cataria L.) by HPLC coupled with ultraviolet and mass spectrometric detection. Phytochem Anal 18(2):157–160PubMedCrossRefGoogle Scholar
  184. Wesołowska A, Jadczak D, Grzeszczuk M (2011) GC-MS analysis of lemon catnip (Nepeta cataria L. var. citriodora Balbis) essential oil. Acta Chromatogr 23(1):169–180CrossRefGoogle Scholar
  185. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64(1):3–19PubMedCrossRefGoogle Scholar
  186. Winnicki AM, Śmieszek JM, Partyka D, Modnicki D (2013) Permeation-enhancing properties of Nepeta cataria var. citriodora dry extract. Herba Polonica 59(3):5–16CrossRefGoogle Scholar
  187. Yang Y, Wang XY, Wang J, Zhao TT, Cheng SY, Shao DD, Xu J (2016) Effects of species diversity on plant growth and remediation of Cd contamination in soil. Acta Sci Circumst 36:2103–2113Google Scholar
  188. Younis A, Riaz A, Khan MA, Khan AA (2009) Effect of time of growing season and time of day for flower harvest on flower yield and essential oil quality and quantity of four Rosa cultivars. Floricult Ornamental Biotechnol 3:98–103Google Scholar
  189. Zhu J, Zeng X (2006) Adult repellency and larvicidal activity of five plant essential oils against mosquitoes. J Am Mosq Control Assoc 22(3):515–523PubMedCrossRefGoogle Scholar
  190. Zhu JJ, Zeng XP, Berkebile D, Du HJ, Tong Y, Qian K (2009) Efficacy and safety of catnip (Nepeta cataria) as a novel filth fly repellent. Med Vet Entomol 23:209–216PubMedCrossRefGoogle Scholar
  191. Zhu JJ, Berkebile DR, Dunlap CA, Zhang A, Boxler D, Tangtrakulwanich K, Brewer G (2012) Nepetalactones from essential oil of Nepeta cataria represent a stable fly feeding and oviposition repellent. Med Vet Entomol 26:131–138PubMedCrossRefGoogle Scholar
  192. Zimowska B (2008) Biodiversity of fungi colonizing and damaging selected parts of motherwort (Leonurus cardiaca L.). Herba Pollonica 54(2):30–40Google Scholar
  193. Zomorodian K, Saharkhiz MJ, Shariati S, Pakshir K, Rahimi MJ, Khashei R (2012) Chemical composition and antimicrobial activities of essential oils from Nepeta cataria L. against common causes of food-borne infections. ISRN Pharm 2012:1–7Google Scholar
  194. Zomorodian K, Saharkhiz MJ, Rahimi MJ, Shariatifard S, Pakshir K, Khashei R (2013) Chemical composition and antimicrobial activities of essential oil of Nepeta cataria L. against common causes of oral infections. J Dent 10:329–337Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.New Use Agriculture and Natural Plant Products Program, Department of Plant BiologyRutgers UniversityNew BrunswickUSA
  2. 2.CAPES Foundation, Ministry of Education of BrazilBrasília DFBrazil
  3. 3.Department of Medicinal ChemistryErnest Mario School of Pharmacy, Rutgers UniversityPiscatawayUSA
  4. 4.Department of Plant Biology, Rutgers UniversityPhilip E. Marucci Center for Blueberry and Cranberry Research and ExtensionChatsworthUSA

Personalised recommendations