Abstract
Nanopharmaceuticals are an emerging innovative domain of research that integrates nanotechnology and biotechnology applications. This technological development will permit producing unique nanopharmaceutical compounds used in the medical field, particularly in drug delivery. This book chapter focuses on organic (polymeric and lipid nanoparticles, dendrimers) and inorganic (magnetic nanoparticles and quantum dots) materials used to produce nanopharmaceuticals with different characteristics such as size, structure, chemical composition, and behavior enabling their use in different fields, one of which the drug delivery systems. Within drug delivery systems, special emphasis is given to vesicular (liposomes) and nanoparticulate carriers as they are the most explored at the market level. The biotechnological development, main features, and examples of applications of some types of nanostructures are discussed. Moreover, data available on sources, pathways, and effects of nanopharmaceuticals in the aquatic environment are discussed, with special emphasis on the environmental impact of these nanopharmaceuticals to the aquatic environment. Results indicate that there is no standard protocol for ecotoxicological testing and limited information exists on environmental impact assessment of nanopharmaceuticals. Thus, human and environmental safety guidelines are urgently needed to protect both the human health and the environment.
Keywords
- Aquatic organisms
- Biomarkers
- Drug delivery
- Ecotoxicity
- Environmental risk assessment
- Nanopharmaceuticals
- Nanotoxicology
- Public health
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102–110. https://doi.org/10.1186/1556-276X-8-102
Al Sabbagh C, Tsapis N, Novell A, Calleja-Gonzalez P, Escoffre JM, Bouakaz A, Chacun H, Denis S, Vergnaud J, Gueutin C, Fattal E (2015) Formulation and pharmacokinetics of thermosensitive stealth® liposomes encapsulating 5-Fluorouracil. Pharm Res 32(5):1585–1603. https://doi.org/10.1007/s11095-014-1559-0
Albertazzi L, Serresi M, Albanese A, Beltram F (2010) Dendrimer internalization and intracellular trafficking in living cells. Mol Pharm 7(3):680–688. https://doi.org/10.1021/mp9002464
Almeida AJ, Grenha A (2014) Chapter 22: Technosphere®: an inhalation system for pulmonary delivery of biopharmaceuticals. In: das Neves J, Sarmento B (eds) Mucosal delivery of biopharmaceuticals: biology, challenges and strategies. Springer, Boston, pp 483–498. https://doi.org/10.1007/978-1-4614-9524-6_22
Amaral AC, Felipe MS (2013) Nanobiotechnology: an efficient approach to drug delivery of unstable biomolecules. Curr Protein Pept Sci 14(7):588–594. https://doi.org/10.2174/1389203711209070632
Amaral AC, Marques AF, Muñoz JE, Bocca AL, Simioni AR, Tedesco AC, Morais PC, Travassos LR, Taborda CP, Felipe MS (2010) Poly (lactic acid-glycolic acid) nanoparticles markedly improve immunological protection provided by peptide P10 against murine paracoccidioidomycosis. Br J Pharmacol 159:1126–1132. https://doi.org/10.1111/j.1476-5381.2009.00617.x
Amaral AC, Silva ON, Mundim NC, de Carvalho MJ, Migliolo L, Leite JR, Prates MV, Bocca AL, Franco OL, Felipe MS (2012) Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics. Peptides 37(2):301–308. https://doi.org/10.1016/j.peptides.2012.07.021
Ates M, Demir V, Arslan Z, Kaya H, Yılmaz S, Camas M (2016) Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: effects of particle morphology on accumulation, elimination, hematology and immune responses. Aquat Toxicol 177:22–32. https://doi.org/10.1016/j.aquatox.2016.05.005
Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13(1):238–252
Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA (2008) Emerging nanopharmaceuticals. Nanomedicine 4:23–282. https://doi.org/10.1016/j.nano.2008.06.002
Berkner S, Schwirn K, Voelker D (2016) Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35:780–787. https://doi.org/10.1002/etc.3039
Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA (2017) Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm 526(1–2):474–495. https://doi.org/10.1016/j.ijpharm.2017.05.016
Bovier PA (2008) Epaxal: a virosomal vaccine to prevent hepatitis A infection. Expert Rev Vaccines 7(8):1141–1150. https://doi.org/10.1586/14760584.7.8.1141
Brandelli A (2012) Nanostructures as promising tools for delivery of antimicrobial peptides. Mini-Rev Med Chem 12:731–741. https://doi.org/10.2174/138955712801264774
Briuglia ML, Rotella C, McFarlane A, Lamprou DA (2015) Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv Transl Res 5(3):231–242. https://doi.org/10.1007/s13346-015-0220-8
Canesi L, Corsi I (2016) Effects of nanomaterials on marine invertebrates. Sci Total Environ:1–8. https://doi.org/10.1016/j.scitotenv.2016.01.085
Canesi L, Balbi T, Fabbri R, Salis A, Damonte G, Volland M, Blasco J (2017) Biomolecular coronas in invertebrate species: implications in the environmental impact of nanoparticles. NanoImpact 8:89–98. https://doi.org/10.1016/j.impact.2017.08.001
Chen K, Guan J (2011) A bibliometric investigation of research performance in emerging nanobiopharmaceuticals. J Informetr 5:233–247. https://doi.org/10.1016/j.joi.2010.10.007
Chen PJ, Wu WL, Wu KCW (2013) The zerovalent iron nanoparticle causes higher developmental toxicity than its oxidation products in early life stages of medaka fish. Water Res 47(12):3899–3909. https://doi.org/10.1016/j.watres.2012.12.043
Csaba N, Garcia-Fuentes M, Alonso MJ (2006) The performance of nanocarriers for transmucosal drug delivery. Expert Opin Drug Deliv 3(4):463–478. https://doi.org/10.1517/17425247.3.4.463
Deerinck TJ (2008) The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol Pathol 36(1):112–116. https://doi.org/10.1177/0192623307310950
Dias AM, Hussain A, Marcos AS, Roque AC (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29(1):142–155. https://doi.org/10.1016/j.biotechadv.2010.10.003
Dwivedi AD, Dubey SP, Sillanpää M, Kwon Y-N, Lee C, Varma RS (2015) Fate of engineered nanoparticles: implications in the environment. Coord Chem Rev 287:64–78. https://doi.org/10.1016/j.ccr.2014.12.014
European Medicines Agency (2006) Guideline on the environmental risk assessment of medicinal products for human use. In: EMEA/CHMP/SWP/4447/00. UK, London
European Chemicals Agency. (2008). Guidance on information requirements and chemical safety assessment. Part C: PBT Assessment. http://echa.europa.eu/about/reach_en.asp
European Community (2001) Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the community code relating to medicinal products for human use. Off J Eur Union L311:67–128
European Medicines Agency (2011) Questions and answers on Guideline on the environmental risk assessment of medicinal products for human use. In: EMA/CHMP/SWP/44609/2010. UK, London
Federico C, Morittu VM, Britti D, Trapasso E, Cosco D (2012) Gemcitabine-loaded liposomes: rationale, potentialities and future perspectives. Int J Nanomedicine 7:5423–5436. https://doi.org/10.2147/IJN.S34025
Galic VL, Wright JD, Lewin SN, Herzog TJ (2011) Paclitaxel poliglumex for ovarian cancer. Expert Opin Investig Drugs 20(6):813–821. https://doi.org/10.1517/13543784.2011.576666
Gallo J, Long NJ, Aboagye EO (2013) Magnetic nanoparticles as contrast agents in the diagnosis and treatment of cancer. Chem Soc Rev 42:7816–7833. https://doi.org/10.1039/c3cs60149h
Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H (2012) Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ Sci Technol 46:7037–7704. https://doi.org/10.1021/es3001757
Gulati M, Grover M, Singh S, Singh M (1998) Lipophilic drug derivatives in liposomes. Int J Pharm 165(2):129–168. https://doi.org/10.1016/S0378-5173(98)00006-4
Hemmati M, Kazemi B, Najafi F, Zarebkohan A, Shirkoohi R (2016) Synthesis and evaluation of a glutamic acid-modified hPAMAM complex as a promising versatile gene carrier. J Drug Target 24(5):408–421. https://doi.org/10.3109/1061186X.2015.1078338
Herzog C, Hartmann K, Künzi V, Kürsteiner O, Mischler R, Lazar H, Glück R (2009) Eleven years of Inflexal V – a virosomal adjuvanted influenza vaccine. Vaccine 27(33):4381–4387. https://doi.org/10.1016/j.vaccine.2009.05.029
Hong SC, Yoo SY, Kim H, Lee J (2017) Chitosan-based multifunctional platforms for local delivery of therapeutics. Mar Drugs 15(3):60. https://doi.org/10.3390/md1503006
Huh MS, Lee EJ, Koo H, Yhee JY, Oh KS, Son S, Lee S, Kim SH, Kwon IC, Kim K (2017) Polysaccharide-based nanoparticles for gene delivery. Topic Curr Chem 375(2):1–19. https://doi.org/10.1007/s41061-017-0114-y
Immordino ML, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1(3):297–315
ISO (2015) Nanotechnologies – vocabulary – Part 2: Nano-objects. International Organization for Standardization, Geneva
Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14(11):21266–21305. https://doi.org/10.3390/ijms141121266
Jain KK (2008) The handbook of nanomedicine. Humana Press, Totowa
Jiang Y, Lv L, Shi H, Hua Y, Lv W, Wang X, Xin H, Xu Q (2016) PEGylated Polyamidoamine dendrimer conjugated with tumor homing peptide as a potential targeted delivery system for glioma. Colloids Surf B Biointerfaces 147:242–249. https://doi.org/10.1016/j.colsurfb.2016.08.002
Kakar SS, Worth CA, Wang Z, Carter K, Ratajczak M, Gunjal P (2016) DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer. J Cancer Stem Cell Res 4:e1002. https://doi.org/10.14343/JCSCR.2016.4e1002
Kaminskas LM, McLeod VM, Kelly BD, Cullinane C, Sberna G, Williamson M, Boyd BJ, Owen DJ, Porter CJ (2012) Doxorubicin-conjugated PEGylated dendrimers show similar tumoricidal activity but lower systemic toxicity when compared to PEGylated liposome and solution formulations in mouse and rat tumor models. Mol Pharm 9(3):422–432. https://doi.org/10.1021/mp200522d
Kipen HM, Lasking DL (2005) Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol 289(5):L696–L697. https://doi.org/10.1152/ajplung.00277.2005
Kirby C, Clarke J, Gregoriadis G (1980) Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 186:591–598
Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR (2013) Tuning the magnetic properties of nanoparticles. Int J Mol Sci 14(8):15977–16009. https://doi.org/10.3390/ijms140815977
Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H (2012) Preparation, characterization and applications of liposomes: state of the art. J Colloid Sci Biotechnol 1(2):147–168. https://doi.org/10.1166/jcsb.2012.1020
Lasic DD (1988) The spontaneous formation of unilamellar vesicles. J Colloid Interface Sci 124(2):428–435. https://doi.org/10.1016/0021-9797(88)90181-6
Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2015) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ 565:889–901. https://doi.org/10.1016/j.scitotenv.2016.02.003
Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72(3):684–692. https://doi.org/10.1016/j.ecoenv.2008.09.027
Li Q et al (2017) A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nano 7(6):122–147. https://doi.org/10.3390/nano7060122
Lin CR, Yeh CL, Lu SZ, Lyubutin IS, Wang SC, Suzdalev IP (2010) Synthesis, characterization and magnetic properties of nearly monodisperse CuCr2Se4 nanoparticles. Nanotechnology 21(23):235603. https://doi.org/10.1088/0957-4484/21/23/235603
Lin C-H, Chen CH, Lin ZC, Fang JY (2017) Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 25(2):1–16. https://doi.org/10.1016/j.jfda.2017.02.001
Linkov I, Satterstrom FK, Corey LM (2008) Nanotoxicology and nanomedicine: making hard decisions. Nanomedicine 4:167–171. https://doi.org/10.1016/j.nano.2008.01.001
Liu X, Peng L (2016) Dendrimer nanovectors for siRNA delivery. Methods Mol Biol 1364:127–142. https://doi.org/10.1007/978-1-4939-3112-5_11
Loebinger MR, Kyrtatos PG, Turmaine M, Price AN, Pankhurst Q, Lythgoe MF, Janes SM (2009) Magnetic resonance imaging of mesenchymal stem cells homing to pulmonary metastases using biocompatible magnetic nanoparticles. Cancer Res 69(23):8862–8867. https://doi.org/10.1158/0008-5472.CAN-09-1912
Lopes M, Shrestha N, Correia A, Shahbazi MA, Sarmento B, Hirvonen J, Veiga F, Seiça R, Ribeiro A, Santos HA (2016) Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release 232:29–41. https://doi.org/10.1016/j.jconrel.2016.04.012
Madureira AR, Pereira A, Pintado M (2015) Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr Polym 130:429–439. https://doi.org/10.1016/j.carbpol.2015.05.030
Mahapatra I, Clark J, Dobson PJ, Owen R, Lead JR (2013) Potential environmental implications of nanoenabled medical applications: critical review. Environ Sci Process Impacts 15:123. https://doi.org/10.1039/c2em30640a
Mahapatra I, Clark J, Dobson PJ, Owen R, Lead JR (2013) Potential environmental implications of nano-enabled medical applications: critical review. Environ Sci Process Impacts 15:123. https://doi.org/10.1039/c2em30640a
Mallipeddi R, Rohan LC (2010) Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert Opin Drug Deliv 7(1):37–48. https://doi.org/10.1517/17425240903338055
Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R, Rochlitz C (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 13(12):1234–1241. https://doi.org/10.1016/S1470-2045(12)70476-X
Manaia EB, Abuçafy MP, Chiari-Andréo BG, Silva BL, Oshiro Junior JA, Chiavacci LA (2017) Physicochemical characterization of drug nanocarriers. Int J Nanomedicine 12:4991–5011. https://doi.org/10.2147/IJN.S133832
Martínez A, Fernández A, Pérez E, Benito M, Teijón JM, Blanco MD (2012) Chapter 9: Polysaccharide-based nanoparticles for controlled release formulations. In: The delivery of nanoparticles. InTech, Rijeka, p 552
Maysinger D, Lovrić J, Eisenberg A, Savić R (2007) Fate of micelles and quantum dots in cells. Eur J Pharm Biopharm 65(3):270–281. https://doi.org/10.1016/j.ejpb.2006.08.011
McBain SC, Griesenbach U, Xenariou S, Keramane A, Batich CD, Alton EW, Dobson J (2008) Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 19(40):405102. https://doi.org/10.1088/0957-4484/19/40/405102
Meure LA, Foster NR, Dehghani F (2008) Conventional and dense gas techniques for the production of liposomes: a review. AAPS PharmSciTech 9(3):798–809. https://doi.org/10.1208/s12249-008-9097-x
Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544. https://doi.org/10.1126/science.1104274
Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Cuur. Drug Metab 13(1):105–119. https://doi.org/10.2174/138920012798356934
Miranda-Vilela AL, Yamamoto KR, Miranda KL, Matos BN, de Almeida MC, Longo JP, de Souza Filho J, Fernandes JM, Sartoratto PP, Lacava ZG (2014) Dextran-functionalized magnetic fluid mediating magnetohyperthermia for treatment of Ehrlich-solid-tumor-bearing mice: toxicological and histopathological evaluations. Tumour Biol 35(4):3391–3403. https://doi.org/10.1007/s13277-013-1447-y
Misra SK, Dybowska A, Berhanu D, Luoma SN, Valsami-Jones E (2012) The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci Total Environ 438:225–232. https://doi.org/10.1016/j.scitotenv.2012.08.066
Miyajima K (1997) Role of saccharides for the freeze-thawing and freeze drying of liposome. Adv Drug Deliv Rev 24(2–3):151–159. https://doi.org/10.1016/S0169-409X(96)00454-1
Mozafari MR (2010) Chapter 2: Nanoliposomes: preparation and analysis. In: Liposomes – methods and protocols, Volume 1: Pharmaceutical nanocarriers. Springer, Cham, pp 41–62
Nam K., Jung S., Nam J. P., Kim S.W., 2015. Poly(ethylenimine) conjugated bioreducible dendrimer for efficient gene delivery. J Control Release, 220(0): 447–455. doi: https://doi.org/10.1016/j.jconrel.2015.11.005
Nguyen KC, Seligy VL, Tayabali AF (2013) Cadmium telluride quantum dot nanoparticle cytotoxicity and effects on model immune responses to Pseudomonas aeruginosa. Nanotoxicology 7:202–211. https://doi.org/10.3109/17435390.2011.648667
Nogueira VIO (2014) Ecotoxicity and toxicity of nanomaterials with potential for wastewater treatment applications. Int J Cloud Appl Comput 4:33–44
Novell A, Al Sabbagh C, Escoffre JM, Gaillard C, Tsapis N, Fattal E, Bouakaz A (2015) Focused ultrasound influence on calcein-loaded thermosensitive stealth liposomes. Int J Hyperth 31(4):349–358. https://doi.org/10.3109/02656736.2014.1000393
Nunes S, Madureira R, Campos D, Sarmento B, Gomes AM, Pintado M, Reis F (2017) Solid lipid nanoparticle as oral delivery systems of phenolic compounds: overcoming pharmacokinetic limitations for nutraceutical applications. Crit Rev Food Sci Nutr 57(9):1863–1873. https://doi.org/10.1080/10408398.2015.1031337
OECD (2014). Test no. 40: ecotoxicology and environmental fate of manufactured nanomaterials—Expert meeting report. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/? cote¼ENV/JM/MONO(2014) 1
Ottofuelling S, Von der Kammer F, Hofmann T (2011) Commercial titanium dioxide nanoparticles in both natural and synthetic water: comprehensive multidimensional testing and prediction of aggregation behaviour. Environ Sci Technol 45:10045–10052
Pachuau L (2015) Recent developments in novel drug delivery systems for wound healing. Expert Opin Drug Deliv 12(12):1895–1909. https://doi.org/10.1517/17425247.2015.1070143
Perumal OP, Inapagolla R, Kannan S, Kannan RN (2008) The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29(24–25):3469–3476. https://doi.org/10.1016/j.biomaterials.2008.04.038
Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627. https://doi.org/10.1038/nrd2591
Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2(1):8–21. https://doi.org/10.1016/j.nano.2005.12.003
Pour A, Shaterian HR (2017) Design and characterization of lisinopril-loaded superparamagnetic nanoparticles as a new contrast agent for in vitro, in vivo MRI imaging, diagnose the tumors and drug delivery system. J Mater Sci Mater Med 28(6):91. https://doi.org/10.1007/s10856-017-5900
Qualhato G, Rocha TL, de Oliveira Lima EC, e Silva DM, Cardoso JR, Koppe Grisolia C, de Sabóia-Morais SMT (2017) Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata. Chemosphere 183:305–314. https://doi.org/10.1016/j.chemosphere.2017.05.061
Ragelle H, Danhier F, Préat V, Langer R, Anderson DG (2017) Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin Drug Deliv 14(7):851–864. https://doi.org/10.1080/17425247.2016.1244187
Ribeiro AM, Souza Remya AS, Ramesh M, Saravanan M, Poopal RK, Bharathi S, Nataraj D (2015) Iron oxide nanoparticles to an Indian major carp, Labeo rohita: impacts on hematology, ion regulation and gill Na+/K+ ATPase activity. J King Saud Univ Science 27(2):151–160. https://doi.org/10.1016/j.jksus.2014.11.002
Rimondino GN, Oksdath-Mansilla G, Brunetti V, Strumia MC (2017) More than just size: challenges and opportunities of hybrid dendritic nanocarriers. Curr Pharm Des 23(21):3142–3153. https://doi.org/10.2174/1381612823666170407162725
Rivera Gil P, Hühn D, del Mercato LL, Sasse D, Parak WJ (2010) Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res 62(2):115–125. https://doi.org/10.1016/j.phrs.2010.01.009
Rizvi S, Ghaderi S, Keshtgar M, Seifalian A (2010) Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev 1:1–15. https://doi.org/10.3402/nano.v1i0.5161
Rocha TL, Gomes T, Sousa VS, Mestre NC, Bebianno MJ (2015a) Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Mar Environ Res 111:74–88. https://doi.org/10.1016/j.marenvres.2015.06.013
Rocha TL, Gomes T, Pinheiro JP, Sousa VS, Nunes LM, Teixeira MR, Bebianno MJ (2015b) Toxicokinetics and tissue distribution of cadmium-based Quantum Dots in the marine mussel Mytilus galloprovincialis. Environ Pollut 204:207–214. https://doi.org/10.1016/j.envpol.2015.05.008
Rocha TL, Mestre NC, Sabóia-Morais SMT, Bebianno MJ (2017) Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environ Int 98:1–17. https://doi.org/10.1016/j.envint.2016.09.021
Sant’Anna LS, Ferreira AP, Alencar MSM (2013) Patents, drug delivery and public health protection: health risk management for nanopharmaceuticals. J Technol Manag Innov 8:107–118. https://doi.org/10.4067/S0718-27242013000200009
Sarwar HS, Akhtar S, Sohail MF, Naveed Z, Rafay M, Nadhman A, Yasinzai M, Shahnaz G (2017) Redox biology of Leishmania and macrophage targeted nanoparticles for therapy. Nanomedicine 12(14):1713–1725. https://doi.org/10.2217/nnm-2017-0049
Schroeder A, Kost J, Barenholz Y (2009) Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 162(1–2):1–16. https://doi.org/10.1016/j.chemphyslip.2009.08.003
Sharma S, Parmar A, Kori S, Sandhir R (2016) PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Anal Chem 80:30–40. https://doi.org/10.1016/j.trac.2015.06.014
Shi SF, Jia JF, Guo XK, Zhao YP, Chen DS, Guo YY, Cheng T, Zhang XL (2012) Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells. Int J Nanomedicine 7(5):593–602. https://doi.org/10.2147/IJN.S34348
Singh R Jr, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223. https://doi.org/10.1016/j.yexmp.2008.12.004
Smith AM, Duan H, Mohs AM, Nie S (2008) Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev 60(11):1226–1240. https://doi.org/10.1016/j.addr.2008.03.015
Souza AC, Amaral AC (2017) Antifungal therapy for systemic mycosis and the nanobiotechnology era: improving efficacy, biodistribution and toxicity. Front Microbiol 8:336. https://doi.org/10.3389/fmicb.2017.00336
Srikanth K, Ahmad I, Rao JV, Trindade T, Duarte AC, Pereira E (2014) Modulation of glutathione and its dependent enzymes in gill cells of Anguilla anguilla exposed to silica coated iron oxide nanoparticles with or without mercury co-exposure under in vitro condition. Comp Biochem Physiol C Toxicol Pharmacol 162(1):7–14. https://doi.org/10.1016/j.cbpc.2014.02.007
Srinageshwar B, Peruzzaro S, Andrews M, Johnson K, Hietpas A, Clark B, McGuire C, Petersen E, Kippe J, Stewart A, Lossia O, Al-Gharaibeh A, Antcliff A, Culver R, Swanson D, Dunbar G, Sharma A, Rossignol J (2017) PAMAM dendrimers cross the blood-brain barrier when administered through the carotid artery in C57BL/6J mice. Int J Mol Sci 18(3):E628. https://doi.org/10.3390/ijms18030628
Stone NR, Bicanic T, Salim R, Hope W (2016) Liposomal amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs 76(4):485–500. https://doi.org/10.1007/s40265-016-0538-7
Svenson S, Wolfgang M, Hwang J, Ryan J, Eliasof S (2011) Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. J Control Release 153(1):49–55. https://doi.org/10.1016/j.jconrel.2011.03.007
Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 19:29–43. https://doi.org/10.1016/j.ifset.2013.03.002
Tang J, Zhou H, Liu J, Liu J, Li W, Wang Y, Hu F, Huo Q, Li J, Liu Y, Chen C (2017) Dual-mode imaging-guided synergistic chemo- and magnetohyperthermia therapy in a versatile nanoplatform to eliminate cancer stem cells. ACS Appl Mater Interfaces 9(28):23497–23507. https://doi.org/10.1021/acsami.7b06393
Tardi P, Ping C, Wan L, Mayer L (2016) Passive and semi-active targeting of bone marrow and leukemia cells using anionic low cholesterol liposomes. J Drug Target 24(9):797–804. https://doi.org/10.1080/1061186X.2016.1184669
Tarhini M, Greige-Gerges H, Elaissari A (2017) Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm 522(1–2, 172):–197. https://doi.org/10.1016/j.ijpharm.2017.01.067
Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46:7011–7017. https://doi.org/10.1021/es2038596
Torchilin V (2008) Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 5(9):1003–1026. https://doi.org/10.1517/17425247.5.9.1003
Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B (2016) Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 38:1–11. https://doi.org/10.1016/j.jtemb.2016.03.017
Vallo S, Köpp R, Michaelis M, Rothweiler F, Bartsch G, Brandt MP, Gust KM, Wezel F, Blaheta RA, Haferkamp A, Cinatl J Jr (2017) Resistance to nanoparticle albumin-bound paclitaxel is mediated by ABCB1 in urothelial cancer cells. Oncol Lett 13(6):4085–4092. https://doi.org/10.3892/ol.2017.5986
Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26(5):1025–1058. https://doi.org/10.1007/s11095-008-9800-3
Vijayakumar S, Malaikozhundan B, Gobi N, Vaseeharan B, Murthy C (2016) Protective effects of chitosan against the hazardous effects of zinc oxide nanoparticle in freshwater crustaceans Ceriodaphnia cornuta and Moina micrura. Limnologica 61:44–51. https://doi.org/10.1016/j.limno.2016.09.007
Vila JJL, Lastres GJL (2001) Tecnologia farmacéutica I: aspectos fundamentales de los sistemas farmacéuticos y operaciones básicas, 1st edn. Editorial Síntesis, S.A., Madrid
Villacis RAR, Filho JS, Piña B, Azevedo RB, Pic-Taylor A, Mazzeu JF, Grisolia CK (2017) Integrated assessment of toxic effects of maghemite (γ-Fe2O3) nanoparticles in zebrafish. Aquat Toxicol 191:219–225. https://doi.org/10.1016/j.aquatox.2017.08.004
Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicines landscape. Nat Biotechnol 24:1211–1217. https://doi.org/10.1038/nbt1006-1211
Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (Part 1): Products on the market. Int J Nanomedicine 9:4357–4373. https://doi.org/10.2147/IJN.S46900
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037. https://doi.org/10.1016/S1734-1140(12)70901-5
Wu Y, Wang Y, Luo G, Dai Y (2009) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol 100(14):3459–3464. https://doi.org/10.1016/j.biortech.2009.02.018
Wu L, Leng D, Cun D, Foged C, Yang M (2017) Advances in combination therapy of lung cancer: rationales, delivery technologies and dosage regimens. J Control Release 260:78–91. https://doi.org/10.1016/j.jconrel.2017.05.023
Xiong F, Hu K, Yu H, Zhou L, Song L, Zhang Y, Shan X, Liu J, Gu N (2017) A functional iron oxide nanoparticles modified with PLA-PEG-DG as tumor-targeted MRI contrast agent. Pharm Res 34:1683–1692. https://doi.org/10.1007/s11095-017-2165-8
Yegin Y, Yegin C, Oh JK, Orr A, Zhang M, Nagabandi N, Severin T, Villareal T, Sari MM, Castillo A, Scholar E, Akbulut M (2017) Ecotoxic effects of paclitaxel-loaded nanotherapeutics on freshwater algae, Raphidocelis subcapitata and Chlamydomonas reinhardtii. Environ Sci Nano 4:1077–1085. https://doi.org/10.1039/C6EN00332J
You X, Kang Y, Hollett G, Chen X, Zhao W, Gu Z, Wu J (2016) Polymeric nanoparticles for colon cancer therapy: overview and perspectives. J Mater Chem B 4(48):7779–7792. https://doi.org/10.1039/C6TB01925K
Zhang X-Q, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64(13):1363–1384. https://doi.org/10.1016/j.addr.2012.08.005
Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65(1):104–120
Zhang Y, Zhu L, Zhou Y, Chen J (2015) Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J Environ Sci (China) 30:223–230. https://doi.org/10.1016/j.jes.2014.08.024
Zhu X, Tian S, Cai Z (2012) Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One 7(9):e46286. https://doi.org/10.1371/journal.pone.0046286
Acknowledgments
This work was supported by National Portuguese funding through FCT – Fundação para a Ciência e a Tecnologia – through projects UID/BIM/04773/2013, UID/MAR/00350/2019 and UID/Multi/04326/2013.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bebianno, M.J., Rocha, T.L., Pontes, J.F., Amaral, A.C., Grenha, A. (2021). Potential Ecotoxicological Risk of Nanopharmaceuticals in the Aquatic Environment. In: Yata, V., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanopharmaceuticals: Principles and Applications Vol. 2. Environmental Chemistry for a Sustainable World, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-44921-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-44921-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44920-9
Online ISBN: 978-3-030-44921-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)