Skip to main content

Novel Probes and Carriers to Target Senescent Cells

  • Chapter
  • First Online:
Senolytics in Disease, Ageing and Longevity

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 11))

Abstract

Detecting senescent cells has become a task of increasing importance in recent years. The implication of cellular senescence in a variety of physiological processes as well as in various diseases is the main reason why potential diagnostic tools for senescent cells are sought. This chapter clearly and concisely addresses the discussion of the published tools (molecular based probes and nanocarriers) to carry out the diagnosis of senescent cells both in vitro and in vivo and in tissues. The comprehensive reading of this chapter will allow the reader to overview the advances in the area of the detection of cellular senescence using probes and carriers as diagnostic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agirbasli M, Radhakrishnamurthy B, Jiang X, Bao W, Berenson GS (1996) Urinary n-acetyl-β-D-Glucosaminidase changes in relation to age, sex, race, and diastolic and systolic blood pressure in a young adult biracial population: The Bogalusa heart study. Am J Hypertens 9(2):157–161

    Article  CAS  PubMed  Google Scholar 

  • Agostini A, Mondragón L, Bernardos A, Martínez-Máñez R, Marcos MD, Sancenón F et al (2012) Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed 51(42):10556–10560

    Article  CAS  Google Scholar 

  • Aizawa K (1939) Studien über carbohydrasen II. die fermentative hydrolyse des p-Nitrophenol-β-Galactoside. Enzymologia 6:321–324

    Google Scholar 

  • Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A et al (2014) Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis 5:e1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ang J, Lee Y, Raghothaman D, Jayaraman P, Teo KL, Khan FJ et al (2019) Rapid detection of senescent mesenchymal stromal cells by a fluorescent probe. Biotechnol J 14(10):e1800691

    Article  PubMed  CAS  Google Scholar 

  • Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F (2016) Gated materials for on-command release of guest molecules. Chem Rev 116(2):561–718

    Article  CAS  PubMed  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J et al (2016) Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530(9205):184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jesus BB, Blasco MA (2012) Assessing cell and organ senescence biomarkers. Circ Res 111(1):97–109

    Google Scholar 

  • Bernardos A, Aznar E, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J et al (2009) Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. Angew Chem Int Ed 48(32):5884–5887

    Article  CAS  Google Scholar 

  • Biran A, Zada L, Abou Karam P, Vadai E, Roitman L, Ovadya Y et al (2017) Quantitative identification of senescent cells in aging and disease. Aging Cell 16(4):661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J et al (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 16(10):718–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chilvers KF, Perry JD, James AL, Reed RH (2001) Synthesis and evaluation of novel fluorogenic substrates for the detection of bacterial β-Galactosidase. J Appl Microbiol 91(6):1118–1130

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al (1995a) Biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92(20):9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al (1995b) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. PNAS USA 92(20):9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY, Matsuda T et al (2016) Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew Chem Int Ed 55(33):9620–9624

    Article  CAS  Google Scholar 

  • Ekpenyong-Akiba AE, Canfarotta F, Abd HB, Poblocka M, Casulleras M, Castilla-Vallmanya L et al (2019) Detecting and targeting senescent cells using molecularly imprinted nanoparticles. Nanoscale Horiz 4(3):757–768

    Article  CAS  Google Scholar 

  • Esterly JR, Standen AC, Pearson B (1967) The histochemical demonstration of intestinal β-D-fucosidase with 5-bromo-4-chloroindole-3-yl-β-d-fucopyranoside. J Histochem Cytochem 15(8):470–474

    Article  CAS  PubMed  Google Scholar 

  • Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Muñoz-Espín D et al (2017) Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16(1):192–197

    Article  CAS  PubMed  Google Scholar 

  • García-Cao I, García-Cao M, Martín-Caballero J, Criado LM, Klatt P, Flores JM, Weill JC et al (2002) ‘Super p53’ mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21(22):6225–6235

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatenby JB, Moussa TAA (1949) The Sudan Black B technique in cytology: J Microsc. 69(2):72–75

    CAS  Google Scholar 

  • Gee KR, Sun WC, Bhalgat MK, Upson RH, Klaubert DH, Latham KA et al (1999) Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and β-Galactosidases. Anal Biochem 273(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Georgakopoulou E, Tsimaratou K, Evangelou K, Fernandez MP, Zoumpourlis V, Trougakos I et al (2012) Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging 5(1):37–50

    Google Scholar 

  • Grabowska W, Mosieniak G, Achtabowska N, Czochara R, Litwinienko G, Bojko A et al (2019) Curcumin induces multiple signaling pathways leading to vascular smooth muscle cell senescence. Biogerontology 20(6):783–798

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu K, Xu Y, Li H, Guo Z, Zhu SS, Zhu SS et al (2016) Real-time tracking and in vivo visualization of β-Galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J Am Chem Soc 138(16):5334–5340

    Article  CAS  PubMed  Google Scholar 

  • Hamilton TC, Young RC, McKoy WM, Grotzinger KR, Green JA, Chu EW et al (1983) Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res 43(11):5379–5389

    CAS  PubMed  Google Scholar 

  • Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28(6):436–453

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand D, Lehle S, Borst A, Haferkamp S, Essmann F, Schulze-Osthoff K (2013) α-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle 12(12):1922–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz JP, Chua J, Curby RJ, Tomson AJ, Da Rooge MA, Fisher BE et al (1964) Substrates for cytochemical demonstration of enzyme activity. I. Some substituted 3-Indolyl-β-D-Glycopyranosides. J Med Chem 7(4):574–75

    Google Scholar 

  • Hung MC, Zhang X, Yan DH, Zhang HZ, He GP, Zhang TQ et al (1992) Aberrant expression of the C-ErbB-2/Neu protooncogene in ovarian cancer. Cancer Lett 61(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Kiyozuka Y, Maeda H, Noda T, Hosick HL (1990) Establishment and characterization of a human ovarian serous cystadenocarcinoma cell line that produces the tumor markers CA-125 and tissue polypeptide antigen. Oncology 47(2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119(1):97–111

    Article  CAS  PubMed  Google Scholar 

  • Jung T, Höhn A, Grune T (2010) Lipofuscin: detection and quantification by microscopic techniques. Methods Mol Biol 594:173–193

    Article  CAS  PubMed  Google Scholar 

  • Kamiya M, Kobayashi H, Hama Y, Koyama Y, Bernardo M, Nagano T et al (2007) An enzymatically activated fluorescence probe for targeted tumor imaging. J Am Chem Soc 129(13):3918–3929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz ML, Robinson WG, Herrmann RK, Groome AB, Bieri JG (1984) Lipofuscin accumulation resulting from senescence and Vitamin E deficiency: spectral properties and tissue distribution. Mech Ageing Dev 25(1–2):149–159

    Article  CAS  PubMed  Google Scholar 

  • Kim EJ, Podder A, Maiti M, Lee JM, Chung BG, Bhuniya S (2018) Selective monitoring of vascular cell senescence via β-Galactosidase detection with a fluorescent chemosensor. Sens Actuator B-Chem 274(18):194–200

    Article  CAS  Google Scholar 

  • Knaś M, Zalewska A, Krętowski R, Niczyporuk M, Waszkiewicz N, Cechowska-Pasko M et al (2012) The profile of lysosomal exoglycosidases in replicative and stress-induced senescence in early passage human fibroblasts. Folia Histochem Cytobiol 50(2):220–227

    Article  PubMed  Google Scholar 

  • Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC et al (2006) Senescence-Associated β-Galactosidase is lysosomal β-Galactosidase. Aging Cell 5(2):187–195

    Article  CAS  PubMed  Google Scholar 

  • Lee HW, Heo CH, Sen D, Byun HO, Kwak IH, Yoon G et al (2014) Ratiometric two-photon fluorescent probe for quantitative detection of β-Galactosidase activity in senescent cells. Anal Chem 86(20):10001–10005

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Torres B, Galiana I, Rovira M, Garrido E, Chaib S, Bernardos A et al (2017a) An OFF–ON two-photon fluorescent probe for tracking cell senescence in vivo. J Am Chem Soc 139(26):8808–8811

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Torres B, Pascual L, Bernardos A, Marcos MD, Jeppesen JO, Salinas Y et al (2017b) Pseudorotaxane capped mesoporous silica nanoparticles for 3,4-methylenedioxymethamphetamine (MDMA) detection in water. Chem Commun 53(25):3559–3562

    Article  CAS  Google Scholar 

  • Lozano-Torres B, Estepa-Fernández A, Rovira M, Orzáez M, Serrano M, Martínez-Máñez R et al (2019) The chemistry of senescence. Nat Rev Chem 3(7):426–441

    Article  CAS  Google Scholar 

  • Lumba MA, Willis LM, Santra S, Rana R, Schito L, Rey S et al (2017) A β-Galactosidase probe for the detection of cellular senescence by mass cytometry. Org Biomol Chem 15(30):6388–6392

    Article  CAS  PubMed  Google Scholar 

  • McHugh D, Gil J (2018) Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol 217(1):65–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosteiro L, Pantoja C, de Martino A, Serrano M (2018) Senescence promotes in vivo reprogramming through P16INK 4a and IL-6. Aging Cell 17(2):e12711

    Article  CAS  Google Scholar 

  • Muñoz-Espín D (2019) Nanocarriers targeting senescent cells. Trans Med Aging 3:1–5

    Article  Google Scholar 

  • Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7):482–496

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M et al (2018) A versatile drug delivery system targeting senescent cells. EMBO Mol Med 10(9):e9355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niedernhofer LJ, Robbins PD (2018) Senotherapeutics for healthy ageing. Nat Rev Drug Discov. 17(5):377–379

    Article  CAS  PubMed  Google Scholar 

  • Paez-Ribes M, González-Gualda E, Doherty GJ, Muñoz-Espín D (2019) Targeting senescent cells in translational medicine. EMBO Mol Med. 11(12):e10234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen GL (1961) A method of staining the statoacoustic nerve in bulk with Sudan Black B. Anat Rec 139:465–469

    Article  CAS  PubMed  Google Scholar 

  • Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP et al (2017) The senescence-associated secretory phenotype induces cellular plasticity and tissueregeneration. Genes Dev 31(2):172–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotman B (1961) Measurement of activity of single molecules of β-D-Galactosidase. Proc Natl Acad Sci USA 47(12):1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotman B, Zderic JA, Edelstein M (1963) Fluorogenic substrates for β-D-Galactosidases and phosphatases derived from fluorescein (3,6-dihydroxyfluoran) and its monomethylether. PNAS USA 50(3):1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushton AR, Dawson G (1975) Glycosphingolipid β-Galactosidases of cultured mammalian cells: characterization of the enzymes from mouse cell line LMTK and human Lesch-Nyhan fibroblasts. Biochim Biophys Acta Lipids Lipid Metab 388(1):92–105

    Article  CAS  Google Scholar 

  • Schwenck J, Cotton J, Zhou B, Wolter K, Kuehn A, Fuchs K et al (2019) In vivo imaging of tumor senescence with a novel beta-Galactosidase specific PET tracer. Nuklearmedizin 58(02):106

    Google Scholar 

  • Serrano M, Hannon GJ, Beach DA (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic Ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15(7):397–408

    Article  CAS  PubMed  Google Scholar 

  • Soto-Gamez A, Demaria M (2017) Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 22(5):786–795

    Article  CAS  PubMed  Google Scholar 

  • Tang C, Zhou J, Qian Z, Ma Y, Huang Y, Feng HA (2017) Universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-Galactosidase activity detection in vitro and in living cells. J Mater Chem B 5(10):1971–1979

    Article  CAS  PubMed  Google Scholar 

  • Thapa RK, Nguyen HT, Jeong JH, Kim JR, Choi HG, Yong CS et al (2017) Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci Rep 7(1):43299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebraniousk N, Igelmann H, Lu X et al (2002) p53 mutant mice that display early ageing-associated phenotypes. Nature 415(3):45–53

    Article  CAS  PubMed  Google Scholar 

  • Urbanell L, Magini A, Ercolani L, Sagini K, Polchi A, Tancini B et al (2014) Oncogenic H-Ras up-regulates acid β-hexosaminidase by a mechanism dependent on the autophagy regulator TFEB. PLoS One 9(2):e89485

    Article  CAS  Google Scholar 

  • Wang Y, Liu J, Ma X, Cui C, Deenik PR, Henderson PKP et al (2019) Real-time imaging of senescence in tumors with DNA damage. Sci Rep 9(1):2102–2113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woods LL, Sapp J (1962) A New one-step synthesis of substituted coumarins. J Org Chem 27(10):3703–3705

    Article  CAS  Google Scholar 

  • Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24(8):1246–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Kim WH, Han HS, Lee JH, Park HS, Chung JK, Kang SB, Park JG (1997) Establishment and characterization of human ovarian carcinoma cell lines. Gynecol Oncol 66(3):378–387

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li C, Dutta C, Fang M, Zhang S, Tiwari A et al (2017) A novel near-infrared fluorescent probe for sensitive detection of β-Galactosidase in living cells. Anal Chim Acta 968:97–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N et al (2015) The achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14(4):644–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.L.-T. is grateful to the Spanish Ministry of Economy for her Ph.D. grant (FPU15/02707). J. F.-B. thanks to their postdoctoral fellowship (PAID-10-17). The authors are grateful to the Spanish Government (project RTI2018-100910-B-C41 (MCUI/AEI/FEDER, UE) and the Generalitat Valencia (Project PROMETEO/2018/024) for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Martínez-Máñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lozano-Torres, B., Blandez, J.F., Sancenón, F., Martínez-Máñez, R. (2020). Novel Probes and Carriers to Target Senescent Cells. In: Muñoz-Espin, D., Demaria, M. (eds) Senolytics in Disease, Ageing and Longevity. Healthy Ageing and Longevity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-44903-2_9

Download citation

Publish with us

Policies and ethics