Skip to main content

Interconnection Between Cellular Senescence, Regeneration and Ageing in Salamanders

Part of the Healthy Ageing and Longevity book series (HAL,volume 11)

Abstract

Urodele amphibians have long served as key models for regenerative, developmental and evolutionary biology research. Recent studies have uncovered the induction of cellular senescence during limb regeneration. The dynamics of senescence in this context reflects that observed in acute senescence, suggesting that senescent cells may play positive roles in regeneration. Further, salamanders possess a highly robust and efficient mechanism for senescent cell surveillance and clearance. Given the causal role of chronic senescence in ageing and age-related pathologies, it is of therapeutic interest to understand the mechanisms and regulation underlying this clearance mechanism. Here, we discuss what is known about cellular senescence in salamanders, what these organisms can offer towards understanding the roles of cellular senescence in regeneration, and how they can serve as informative models for senescence-based therapeutic approaches.

Keywords

  • Cellular senescence
  • Axolotl
  • Newt
  • Regeneration
  • Development
  • Senolytics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-44903-2_3
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-44903-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3

References

  • Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I et al (2013) Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502(7471):340–345

    CAS  PubMed  CrossRef  Google Scholar 

  • Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al (2011) Clearance of p16(Ink4a)-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baker DJ, Weaver RL, van Deursen JM (2013) p21 both attenuates and drives senescence and aging in BubR1 Progeroid Mice. Cell Rep 3(4):1164–1174

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ben-Porath I, Weinberg RA (2005) The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37(5):961–976

    CAS  PubMed  CrossRef  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352

    CAS  PubMed  CrossRef  Google Scholar 

  • Borkham-Kamphorst E, Schaffrath C, Van de Leur E, Haas U, Tihaa L, Meurer SK et al (2014) The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-beta signaling. Bba-Mol Cell Res 1843(5):902–914

    CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AHFM, Schlegelberger B et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660–665

    CAS  PubMed  CrossRef  Google Scholar 

  • Brockes JP (1997) Amphibian limb regeneration: Rebuilding a complex structure. Science 276(5309):81–97

    CAS  PubMed  CrossRef  Google Scholar 

  • Brockes JP (1998) Regeneration and cancer. Bba-Rev Cancer 1377(1):M1–M11

    CAS  Google Scholar 

  • Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310(5756):1919–1923

    CAS  PubMed  CrossRef  Google Scholar 

  • Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562(7728):578–582

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    CAS  PubMed  CrossRef  Google Scholar 

  • Chen ZB, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, van Deursen JM (2016) Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354(6311):472–477

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J et al (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16(10):718–735

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642

    CAS  PubMed  CrossRef  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Currie JD, Kawaguchi A, Traspas RM, Schuez M, Chara O, Tanaka EM (2016) Live Imaging of Axolotl digit Regeneration reveals Spatiotemporal Choreography of Diverse Connective Tissue Progenitor Pools. Dev Cell 39(4):411–423

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Czarkwiani A, Yun MH (2018) Out with the old, in with the new: senescence in development. Curr Opin Cell Biol 55:74–80

    CAS  PubMed  CrossRef  Google Scholar 

  • Davaapil H, Brockes JP, Yun MH (2017) Conserved and novel functions of programmed cellular senescence during vertebrate development. Development 144(1):106–114

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, Manivannan J et al (2013) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12(2):247–256

    PubMed  CrossRef  CAS  Google Scholar 

  • De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation (vol 566, pg 73, 2019). Nature 572(7767):73–78

    CrossRef  CAS  Google Scholar 

  • Del R-TK, Tsonis PA (2003) Eye regeneration at the molecular age. Dev Dyn 226(2):211–224

    CrossRef  Google Scholar 

  • Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR et al (2014) An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642

    PubMed  CrossRef  CAS  Google Scholar 

  • Dimri GP, Lee XH, Basile G, Acosta M, Scott C, Roskelley C et al (1995) A biomarker that identifies senescent human-cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92(20):9363–9367

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH et al (2013) Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 501(7467):421–425

    PubMed  CrossRef  CAS  Google Scholar 

  • Echeverri K, Tanaka EM (2003) Electroporation as a tool to study in vivo spinal cord regeneration. Dev Dynam 226(2):418–425

    CAS  CrossRef  Google Scholar 

  • Echeverri K, Clarke JDW, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236(1):151–164

    CAS  PubMed  CrossRef  Google Scholar 

  • Eguchi G, Shingai R (1971) Cellular analysis on localization of lens forming potency in newt iris epithelium. Dev Growth Differ 13(4):337–349

    CAS  PubMed  CrossRef  Google Scholar 

  • Eguchi G, Watanabe K (1973) Elicitation of Lens Formation from Ventral Iris Epithelium of Newt by a Carcinogen, N-Methyl-N’-Nitro-N-Nitrosoguanidine. J Embryol Exp Morph 30(1):63–71

    CAS  PubMed  Google Scholar 

  • Eguchi G, Abe SI, Watanabe K (1974) Differentiation of lens-like structures from newt iris epithelial-cells In vitro. Proc Natl Acad Sci USA 71(12):5052–5056

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Eguchi G, Eguchi Y, Nakamura K, Yadav MC, Millan JL, Tsonis PA (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384

    PubMed  CrossRef  CAS  Google Scholar 

  • Elewa A, Wang H, Talavera-Lopez C, Joven A, Brito G, Kumar A et al (2017) Reading and editing the Pleurodeles waltl genome reveals novel features of tetrapod regeneration. Nat Commun 8(1):2286

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Fei JF, Lou WPK, Knapp D, Murawala P, Gerber T, Taniguchi Y et al (2018) Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nat Protoc 13(12):2908–2943

    CAS  PubMed  CrossRef  Google Scholar 

  • Ferretti P, Brockes JP (1988) Culture of Newt Cells from different tissues and their expression of a regeneration-associated antigen. J Exp Zool 247(1):77–91

    CAS  PubMed  CrossRef  Google Scholar 

  • Garcia-Prat L, Martinez-Vicente M, Perdiguero E, Ortet L, Rodriguez-Ubreva J, Rebollo E et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529(7584):37–42

    CAS  PubMed  CrossRef  Google Scholar 

  • Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci USA 110(23):9415–9420

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    CAS  PubMed  CrossRef  Google Scholar 

  • Hayashi T, Yokotani N, Tane S, Matsumoto A, Myouga A, Okamoto M et al (2013) Molecular genetic system for regenerative studies using newts. Dev Growth Differ 55(2):229–236

    PubMed  CrossRef  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621

    CAS  PubMed  CrossRef  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311(5765):1257

    CAS  PubMed  CrossRef  Google Scholar 

  • Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS et al (2013) Lysosome-mediated processing of chromatin in senescence. J Cell Biol 202(1):129–143

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP et al (2017) Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 23(6):775–781

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jeyapalan JC, Ferreira M, Sedivy JA, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128(1):36–44

    CAS  PubMed  CrossRef  Google Scholar 

  • Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12(7):676–685

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G et al (2013) A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 498(7452):109–112

    CAS  PubMed  CrossRef  Google Scholar 

  • Khattak S, Schuez M, Richter T, Knapp D, Haigo SL, Sandoval-Guzman T et al (2013a) Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Rep 1(1):90–103

    CAS  CrossRef  Google Scholar 

  • Khattak S, Sandoval-Guzman T, Stanke N, Protze S, Tanaka EM, Lindemann D (2013b) Foamy virus for efficient gene transfer in regeneration studies. BMC Dev Biol 13:17

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kim HM, Wangemann P (2011) Epithelial cell stretching and luminal acidification lead to a retarded development of stria Vascularis and deafness in mice lacking Pendrin. PLoS ONE 6(3):e17949

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim KH, Chen CC, Monzon RI, Lau LF (2013) Matricellular Protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic Myofibroblasts. Mol Cell Biol 33(10):2078–2090

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kim KH, Won JH, Cheng N, Lau LF (2018) The matricellular protein CCN1 in tissue injury repair. J Cell Commun Signal 12(1):273–279

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH et al (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460(7251):60–65

    CAS  PubMed  CrossRef  Google Scholar 

  • Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 98(21):12072–12077

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Kumar A, Velloso CP, Imokawa Y, Brockes JP (2000) Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol 218(2):125–136

    CAS  PubMed  CrossRef  Google Scholar 

  • Kumar A, Velloso CP, Imokawa Y, Brockes JP (2004) The regenerative plasticity of isolated urodele myofibers and its dependence on Msx1. PLoS Biol 2(8):1168–1176

    CAS  CrossRef  Google Scholar 

  • Laberge RM, Awad P, Campisi J, Desprez PY (2012) Epithelial-mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron 5(1):39–44

    CAS  PubMed  CrossRef  Google Scholar 

  • Lawless C, Wang CF, Jurk D, Merz A, von Zglinicki T, Passos JF (2010) Quantitative assessment of markers for cell senescence. Exp Gerontol 45(10):772–778

    CAS  PubMed  CrossRef  Google Scholar 

  • Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci USA 90(15):7230–7234

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE et al (2013) Non-cell-autonomous tumor suppression by p53. Cell 153(2):449–460

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Meyer K, Hodwin B, Ramanujam D, Engelhardt S, Sarikas A (2016) Essential role for premature senescence of Myofibroblasts in myocardial fibrosis. J Am Coll Cardiol 67(17):2018–2028

    CAS  PubMed  CrossRef  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    CAS  PubMed  CrossRef  Google Scholar 

  • Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17(4):1583–1592

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, Rovira M, et al (2016) Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354(6315):aaf4445

    Google Scholar 

  • Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Bio 15(7):482–496

    CAS  CrossRef  Google Scholar 

  • Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5):1104–1118

    CAS  PubMed  CrossRef  Google Scholar 

  • Nacu E, Tanaka EM (2011) Limb Regeneration: a new development? Annu Rev Cell Dev Bi 27:409–440

    CAS  CrossRef  Google Scholar 

  • Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716

    CAS  PubMed  CrossRef  Google Scholar 

  • Narita M, Narita M, Krizhanovsky V, Nunez S, Chicas A, Hearn SA et al (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126(3):503–514

    CAS  PubMed  CrossRef  Google Scholar 

  • Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C et al (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11(2):345–349

    CAS  PubMed  CrossRef  Google Scholar 

  • Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554(7690):50–55

    CAS  PubMed  CrossRef  Google Scholar 

  • Oliveira CR, Lemaitre R, Murawala P, Tazaki A, Drechsel DN, Tanaka EM (2018) Pseudo typed baculovirus is an effective gene expression tool for studying. Dev Biol 433(2):262–275

    CAS  PubMed  CrossRef  Google Scholar 

  • Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, et al (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 9(1):5435

    Google Scholar 

  • Ponomareva LV, Athippozhy A, Thorson JS, Voss SR (2015) Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration. Comp Biochem Phys C 178:128–135

    CAS  Google Scholar 

  • Rajagopalan S, Long EO (2012) Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci USA 109(50):20596–20601

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Reyer RW, Woolfitt RA, Withersty LT (1973) Stimulation of lens regeneration from newt dorsal iris when implanted into blastema of regenerating limb. Dev Biol 32(2):258–281

    CAS  PubMed  CrossRef  Google Scholar 

  • Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP et al (2017) The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 31(2):172–183

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 6(2):168–170

    CAS  PubMed  CrossRef  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    CAS  PubMed  CrossRef  Google Scholar 

  • Shah PP, Donahue G, Otte GL, Capell BC, Nelson DM, Cao K et al (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev 27(16):1787–1799

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V et al (2014) Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506(7488):316–421

    CAS  PubMed  CrossRef  Google Scholar 

  • Stein GH, Beeson M, Gordon L (1990) Failure to phosphorylate the retinoblastoma gene product in senescent human fibroblasts. Science 249(4969):666–669

    CAS  PubMed  CrossRef  Google Scholar 

  • Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155(5):1119–1130

    CAS  PubMed  CrossRef  Google Scholar 

  • Tanaka EM (2016) The molecular and cellular choreography of appendage regeneration. Cell 165(7):1598–1608

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsonis PA (1983) Effects of carcinogens on regenerating and non-regenerating limbs in amphibia. Anticancer Res 3(3):195–202

    CAS  PubMed  Google Scholar 

  • Tsonis PA, Eguchi G (1981) Carcinogens on regeneration—effects of N-Methyl-N’-Nitro-N-Nitrosoguanidine and 4-Nitroquinoline-1-Oxide on limb regeneration in adult newts. Differentiation 20(1):52–60

    CAS  PubMed  CrossRef  Google Scholar 

  • Tsonis PA, Eguchi G (1982) Abnormal limb regeneration without tumor production in adult newts directed by Carcinogens, 20-Methylcholanthrene and Benzo (Alpha) Pyrene. Dev Growth Differ 24(2):183–190

    CAS  CrossRef  Google Scholar 

  • van Deursen JM (2014) The role of senescent cells in ageing. Nature 509(7501):439–446

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Villiard E, Denis JF, Hashemi FS, Igelmann S, Ferbeyre G, Roy S (2017) Senescence gives insights into the morphogenetic evolution of anamniotes. Biol Open 6(6):891–896

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344

    CrossRef  Google Scholar 

  • Wang CF, Jurk D, Maddick M, Nelson G, Martin-Ruiz C, von Zglinicki T (2009) DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8(3):311–323

    CAS  CrossRef  PubMed  Google Scholar 

  • Wang JW, Geiger H, Rudolph KL (2011) Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol 23(4):532–536

    CAS  PubMed  CrossRef  Google Scholar 

  • Whited JL, Tsai SL, Beier KT, White JN, Piekarski N, Hanken J et al (2013) Pseudotyped retroviruses for infecting axolotl in vivo and in vitro. Development 140(5):1137–1146

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yun MH (2015) Changes in regenerative capacity through lifespan. Int J Mol Sci 16(10):25392–25432

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Yun MH (2018) Cellular senescence in tissue repair: every cloud has a silver lining. Int J Dev Biol 62(6–8):591–604

    CAS  PubMed  CrossRef  Google Scholar 

  • Yun MH, Gates PB, Brockes JP (2013) Regulation of p53 is critical for vertebrate limb regeneration. Proc Natl Acad Sci USA 110(43):17392–17397

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  • Yun MH, Davaapil H, Brockes JP (2015) Recurrent turnover of senescent cells during regeneration of a complex structure. Elife 4:e05505

    PubMed Central  CrossRef  Google Scholar 

  • Zhang R, Chen W, Adams PD (2007) Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol 27(6):2343–2358

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Zilakos NP, Tsonis PA, Delriotsonis K, Parchment RE (1992) Newt squamous carcinoma proves phylogenetic conservation of tumors as caricatures of tissue renewal. Cancer Res 52(18):4858–4865

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximina H. Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Yu, Q., Yun, M.H. (2020). Interconnection Between Cellular Senescence, Regeneration and Ageing in Salamanders. In: Muñoz-Espin, D., Demaria, M. (eds) Senolytics in Disease, Ageing and Longevity. Healthy Ageing and Longevity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-44903-2_3

Download citation