Skip to main content

Nephrotic Syndrome

  • Chapter
  • First Online:
Nutrition in Kidney Disease

Part of the book series: Nutrition and Health ((NH))

  • 983 Accesses

Abstract

Nephrotic syndrome is defined as proteinuria >3.5 g/day for an adult, hypoalbuminemia, edema, hyperlipidemia, and lipiduria. While there is a myriad of causes, the complications result from the severity of proteinuria and the accompanying changes in plasma protein composition that occur. Complications include atherosclerosis, vascular thrombosis, anasarca, infection, nutritional depletion, and progressive kidney injury. Reducing proteinuria is critical. When specific therapy targeting the underlying etiology fails, blocking the renin-angiotensin system will reduce proteinuria, enhanced by concomitant moderate protein restriction. Plant sources of protein may offer additional benefit in reducing proteinuria and hyperlipidemia. Vitamin D, iron, and zinc deficiency may occur due to urinary loss of carrier proteins and are treated with appropriate dietary supplementation.

The editors acknowledge Kumar Dinesh’s contribution to this chapter in Nutrition in Kidney Disease, Second Edition, Nutrition and Health, DOI 10.1007/978-1-62703-685-6_1, © Springer Science+Business Media New York 2014

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hull RP, Goldsmith DJ. Nephrotic syndrome in adults. BMJ. 2008;336(7654):1185–9.

    PubMed  PubMed Central  Google Scholar 

  2. CG SK, Marsden PA, Taal MW, ASL Y, editors. Brenner and Rector’s the kidney. 10th ed. Philadelphia: Elsevier; 2016.

    Google Scholar 

  3. de Seigneux S, Martin PY. Management of patients with nephrotic syndrome. Swiss Med Weekly. 2009;139(29–30):416–22.

    Google Scholar 

  4. Sharif B, Barua M. Advances in molecular diagnosis and therapeutics in nephrotic syndrome and focal and segmental glomerulosclerosis. Curr Opin Nephrol Hypertens. 2018;27(3):194–200.

    CAS  PubMed  Google Scholar 

  5. Couser WG. Primary membranous nephropathy. Clin J Am Soc Nephrol. 2017;12(6):983–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mundel P, Reiser J. Proteinuria: an enzymatic disease of the podocyte? Kidney Int. 2010;77(7):571–80.

    CAS  PubMed  Google Scholar 

  7. Teoh CW, Robinson LA, Noone D. Perspectives on edema in childhood nephrotic syndrome. Am J Physiol Renal Physiol. 2015;309(7):F575–82.

    CAS  PubMed  Google Scholar 

  8. Siddall EC, Radhakrishnan J. The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int. 2012;82(6):635–42.

    CAS  PubMed  Google Scholar 

  9. Klein JD. Corin: an ANP protease that may regulate sodium reabsorption in nephrotic syndrome. Kidney Int. 2010;78(7):635–7.

    CAS  PubMed  Google Scholar 

  10. Kerlin BA, Ayoob R, Smoyer WE. Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin J Am SocNephrol. 2012;7(3):513–20.

    CAS  Google Scholar 

  11. Loscalzo J. Venous thrombosis in the nephrotic syndrome. N Engl J Med. 2013;368(10):956–8.

    CAS  PubMed  Google Scholar 

  12. Eneman B, Freson K, van den Heuvel L, van Hoyweghen E, Collard L, Vande Walle J, et al. Pituitary adenylate cyclase-activating polypeptide deficiency associated with increased platelet count and aggregability in nephrotic syndrome. J Thromb Haemost. 2015;13(5):755–67.

    CAS  PubMed  Google Scholar 

  13. Chen G, Liu H, Liu F. A glimpse of the glomerular milieu: from endothelial cell to thrombotic disease in nephrotic syndrome. Microvasc Res. 2013;89:1–6.

    CAS  PubMed  Google Scholar 

  14. de Sain-van der Velden MG, Kaysen GA, Barrett HA, Stellaard F, Gadellaa MM, Voorbij HA, et al. Increased VLDL in nephrotic patients results from a decreased catabolism while increased LDL results from increased synthesis. Kidney Int. 1998;53(4):994–1001.

    Google Scholar 

  15. Sun X, Jones H Jr, Joles JA, van Tol A, Kaysen GA. Apolipoprotein gene expression in analbuminemic rats and in rats with Heymann nephritis. Am J Phys. 1992;262(5 Pt 2):F755–61.

    CAS  Google Scholar 

  16. Haas ME, Levenson AE, Sun X, Liao WH, Rutkowski JM, de Ferranti SD, et al. The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation. 2016;134(1):61–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu S, Vaziri ND. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol Dial Transplant. 2014;29(3):538–43.

    CAS  PubMed  Google Scholar 

  18. Hari P, Khandelwal P, Satpathy A, Hari S, Thergaonkar R, Lakshmy R, et al. Effect of atorvastatin on dyslipidemia and carotid intima-media thickness in children with refractory nephrotic syndrome: a randomized controlled trial. Pediatr Nephrol. 2018;33(12):2299–309.

    PubMed  Google Scholar 

  19. Davies RW, Staprans I, Hutchison FN, Kaysen GA. Proteinuria, not altered albumin metabolism, affects hyperlipidemia in the nephrotic rat. J Clin Invest. 1990;86(2):600–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17(1):117–22.

    CAS  PubMed  Google Scholar 

  21. Mace C, Chugh SS. Nephrotic syndrome: components, connections, and angiopoietin-like 4-related therapeutics. J Am Soc Nephrol. 2014;25(11):2393–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wanner C, Rader D, Bartens W, Krämer J, Brewer HB, Schollmeyer P, et al. Elevated plasma lipoprotein(a) in patients with the nephrotic syndrome. Ann Intern Med. 1993;119(4):263–9.

    CAS  PubMed  Google Scholar 

  23. Vaziri ND. Molecular mechanisms of lipid disorders in nephrotic syndrome. Kidney Int. 2003;63(5):1964–76.

    PubMed  Google Scholar 

  24. Kronenberg F. Dyslipidemia and nephrotic syndrome: recent advances. J Renal Nutr. 2005;15(2):195–203.

    Google Scholar 

  25. Stenvinkel P, Berglund L, Ericsson S, Alvestrand A, Angelin B, Eriksson M. Low-density lipoprotein metabolism and its association to plasma lipoprotein(a) in the nephrotic syndrome. Eur J Clin Investig. 1997;27(2):169–77.

    CAS  Google Scholar 

  26. De Sain-Van Der Velden MG, Reijngoud DJ, Kaysen GA, Gadellaa MM, Voorbij H, Stellaard F, et al. Evidence for increased synthesis of lipoprotein(a) in the nephrotic syndrome. J Am Soc Nephrol. 1998;9(8):1474–81.

    Google Scholar 

  27. Shearer GC, Kaysen GA. Proteinuria and plasma compositional changes contribute to defective lipoprotein catabolism in the nephrotic syndrome by separate mechanisms. Am J Kidney Dis. 2001;37(1 Suppl 2):S119–22.

    CAS  PubMed  Google Scholar 

  28. Vaziri ND, Liang K, Parks JS. Acquired lecithin-cholesterol acyltransferase deficiency in nephrotic syndrome. Am J Physiol Renal Physiol. 2001;280(5):F823–8.

    CAS  PubMed  Google Scholar 

  29. Wilmer WA, Rovin BH, Hebert CJ, Rao SV, Kumor K, Hebert LA. Management of glomerular proteinuria: a commentary. J Am Soc Nephrol. 2003;14(12):3217–32.

    CAS  PubMed  Google Scholar 

  30. Peterson JC, Adler S, Burkart JM, Greene T, Hebert LA, Hunsicker LG, et al. Blood pressure control, proteinuria, and the progression of renal disease. The modification of diet in renal disease study. Ann Intern Med. 1995;123(10):754–62.

    CAS  PubMed  Google Scholar 

  31. Ruggenenti P, Perna A, Remuzzi G, Investigators GG. Retarding progression of chronic renal disease: the neglected issue of residual proteinuria. Kidney Int. 2003;63(6):2254–61.

    CAS  PubMed  Google Scholar 

  32. Moorhead JF, Chan MK, El-Nahas M, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet. 1982;2(8311):1309–11.

    CAS  PubMed  Google Scholar 

  33. Abbate M, Zoja C, Remuzzi G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol Dial Transplant. 2014;30(5):706–12.

    PubMed  Google Scholar 

  34. Li J, Zhang Q, Su B. Clinical characteristics and risk factors of severe infections in hospitalized adult patients with primary nephrotic syndrome. J Int Med Res. 2017;45(6):2139–45.

    PubMed  PubMed Central  Google Scholar 

  35. Trivin C, Tran A, Moulin B, Choukroun G, Gatault P, Courivaud C, et al. Infectious complications of a rituximab-based immunosuppressive regimen in patients with glomerular disease. Clin Kidney J. 2017;10(4):461–9.

    PubMed  Google Scholar 

  36. Groves AP, Reich P, Sigdel B, Davis TK. Pneumococcal hemolytic uremic syndrome and steroid resistant nephrotic syndrome. Clin Kidney J. 2016;9(4):572–5.

    PubMed  PubMed Central  Google Scholar 

  37. Rheault MN, Zhang L, Selewski DT, Kallash M, Tran CL, Seamon M, et al. AKI in children hospitalized with nephrotic syndrome. Clin J Am Soc Nephrol. 2015;10(12):2110–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Alfakeekh K, Azar M, Sowailmi BA, Alsulaiman S, Makdob SA, Omair A, et al. Immunosuppressive burden and risk factors of infection in primary childhood nephrotic syndrome. J Infect Public Health. 2019;12(1):90–4.

    PubMed  Google Scholar 

  39. Aljebab F, Choonara I, Conroy S. Long-course oral corticosteroid toxicity in children. Arch Dis Child. 2016;101(9):e2.

    PubMed  Google Scholar 

  40. Afroz S, Roy DK, Khan AH. Low serum immunglobulin G (IgG) during nephrosis is a predictor of urinary tract infection (UTI) in children with nephrotic syndrome. Mymensingh Med J. 2013;22(2):336–41.

    CAS  PubMed  Google Scholar 

  41. al-Bander HA, Martin VI, Kaysen GA. Plasma IgG pool is not defended from urinary loss in nephrotic syndrome. Am J Phys. 1992;262(3 Pt 2):F333–7.

    CAS  Google Scholar 

  42. Ogi M, Yokoyama H, Tomosugi N, Hisada Y, Ohta S, Takaeda M, et al. Risk factors for infection and immunoglobulin replacement therapy in adult nephrotic syndrome. Am J Kidney Dis. 1994;24(3):427–36.

    CAS  PubMed  Google Scholar 

  43. Han JW, Lee KY, Hwang JY, Koh DK, Lee JS. Antibody status in children with steroid-sensitive nephrotic syndrome. Yonsei Med J. 2010;51(2):239–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Warshaw BL, Check IJ. IgG subclasses in children with nephrotic syndrome. Am J Clin Pathol. 1989;92(1):68–72.

    CAS  PubMed  Google Scholar 

  45. de Sain-van der Velden MG, Kaysen GA, de Meer K, Stellaard F, Voorbij HA, Reijngoud DJ, et al. Proportionate increase of fibrinogen and albumin synthesis in nephrotic patients: measurements with stable isotopes. Kidney Int. 1998;53(1):181–8.

    Google Scholar 

  46. Prinsen BH, de Sain-van der Velden MG, Kaysen GA, Straver HW, van Rijn HJ, Stellaard F, et al. Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. J Am Soc Nephrol. 2001;12(5):1017–25.

    Google Scholar 

  47. de Sain-Van Der Velden MG, de Meer K, Kulik W, Melissant CF, Rabelink TJ, Berger R, et al. Nephrotic proteinuria has no net effect on total body protein synthesis: measurements with (13)C valine. Am J Kidney Dis. 2000;35(6):1149–54.

    Google Scholar 

  48. Kaysen GA, Carstensen A, Martin VI. Muscle protein synthesis is impaired in nephrotic rats. Miner Electrolyte Metab. 1992;18(2–5):228–32.

    CAS  PubMed  Google Scholar 

  49. Kaysen GA. Albumin metabolism in the nephrotic syndrome: the effect of dietary protein intake. Am J Kidney Dis. 1988;12(6):461–80.

    CAS  PubMed  Google Scholar 

  50. Giordano M, De Feo P, Lucidi P, DePascale E, Giordano G, Cirillo D, et al. Effects of dietary protein restriction on fibrinogen and albumin metabolism in nephrotic patients. Kidney Int. 2001;60(1):235–42.

    CAS  PubMed  Google Scholar 

  51. Kaysen GA, Kirkpatrick WG, Couser WG. Albumin homeostasis in the nephrotic rat: nutritional considerations. Am J Phys. 1984;247(1 Pt 2):F192–202.

    CAS  Google Scholar 

  52. Kaysen GA, Gambertoglio J, Felts J, Hutchison FN. Albumin synthesis, albuminuria and hyperlipemia in nephrotic patients. Kidney Int. 1987;31(6):1368–76.

    CAS  PubMed  Google Scholar 

  53. Sun X, Martin V, Weiss RH, Kaysen GA. Selective transcriptional augmentation of hepatic gene expression in the rat with Heymann nephritis. Am J Phys. 1993;264(3 Pt 2):F441–7.

    CAS  Google Scholar 

  54. Iorember F, Aviles D. Anemia in nephrotic syndrome: approach to evaluation and treatment. Pediatr Nephrol. 2017;32(8):1323–30.

    PubMed  Google Scholar 

  55. Brown EA, Sampson B, Muller BR, Curtis JR. Urinary iron loss in the nephrotic syndrome--an unusual cause of iron deficiency with a note on urinary copper losses. Postgrad Med J. 1984;60(700):125–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Taal MWCG, Marsden PA, Skorecki K, Yu ASL, Brenner BM, editors. Brenner and Rector’s the kidney. 9th ed. Philadelphia: Elsevier Saunders; 2011.

    Google Scholar 

  57. Ishimitsu T, Ono H, Sugiyama M, Asakawa H, Oka K, Numabe A, et al. Successful erythropoietin treatment for severe anemia in nephrotic syndrome without renal dysfunction. Nephron. 1996;74(3):607–10.

    CAS  PubMed  Google Scholar 

  58. Pedraza-Chaverri J, Torres-Rodriguez GA, Cruz C, Mainero A, Tapia E, Ibarra-Rubio ME, et al. Copper and zinc metabolism in aminonucleoside-induced nephrotic syndrome. Nephron. 1994;66(1):87–92.

    CAS  PubMed  Google Scholar 

  59. Bovio G, Piazza V, Ronchi A, Montagna G, Semeraro L, Galli F, et al. Trace element levels in adult patients with proteinuria. Minerva Gastroenterol Dietol. 2007;53(4):329–36.

    CAS  PubMed  Google Scholar 

  60. Niel O, Thouret MC, Berard E. Anemia in congenital nephrotic syndrome: role of urinary copper and ceruloplasmin loss. Blood. 2011;117(22):6054–5.

    CAS  PubMed  Google Scholar 

  61. Shah KN, Yan AC. Acquired zinc deficiency acrodermatitis associated with nephrotic syndrome. Pediatr Dermatol. 2008;25(1):56–9.

    PubMed  Google Scholar 

  62. Podda GM, Lussana F, Moroni G, Faioni EM, Lombardi R, Fontana G, et al. Abnormalities of homocysteine and B vitamins in the nephrotic syndrome. Thromb Res. 2007;120(5):647–52.

    CAS  PubMed  Google Scholar 

  63. Choudhary S, Agarwal I, Seshadri MS. Calcium and vitamin D for osteoprotection in children with new-onset nephrotic syndrome treated with steroids: a prospective, randomized, controlled, interventional study. Pediatr Nephrol. 2014;29(6):1025–32.

    PubMed  Google Scholar 

  64. Brown AC. Kidney toxicity related to herbs and dietary supplements: online table of case reports. Part 3 of 5 series. Food Chem Toxicol. 2017;107(Pt A):502–19.

    CAS  PubMed  Google Scholar 

  65. Banerjee S, Basu S, Sen A, Sengupta J. The effect of vitamin D and calcium supplementation in pediatric steroid-sensitive nephrotic syndrome. Pediatr Nephrol. 2017;32(11):2063–70.

    PubMed  Google Scholar 

  66. Gulati S, Sharma RK, Gulati K, Singh U, Srivastava A. Longitudinal follow-up of bone mineral density in children with nephrotic syndrome and the role of calcium and vitamin D supplements. Nephrol Dial Transplant. 2005;20(8):1598–603.

    CAS  PubMed  Google Scholar 

  67. Kraut JA, Madias NE. Consequences and therapy of the metabolic acidosis of chronic kidney disease. Pediatr Nephrol. 2011;26(1):19–28.

    PubMed  Google Scholar 

  68. Shah SN, Abramowitz M, Hostetter TH, Melamed ML. Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis. 2009;54(2):270–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20(9):2075–84.

    PubMed  PubMed Central  Google Scholar 

  70. Wesson DE, Simoni J, Broglio K, Sheather S. Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol Renal Physiol. 2011;300(4):F830–7.

    CAS  PubMed  Google Scholar 

  71. MacKinnon M, Shurraw S, Akbari A, Knoll GA, Jaffey J, Clark HD. Combination therapy with an angiotensin receptor blocker and an ACE inhibitor in proteinuric renal disease: a systematic review of the efficacy and safety data. Am J Kidney Dis. 2006;48(1):8–20.

    CAS  PubMed  Google Scholar 

  72. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Google Scholar 

  73. Susantitaphong P, Sewaralthahab K, Balk EM, Eiam-ong S, Madias NE, Jaber BL. Efficacy and safety of combined vs. single renin-angiotensin-aldosterone system blockade in chronic kidney disease: a meta-analysis. Am J Hypertens. 2013;26(3):424–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bianchi S, Bigazzi R, Campese VM. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 2006;70(12):2116–23.

    CAS  PubMed  Google Scholar 

  75. Epstein M, Williams GH, Weinberger M, Lewin A, Krause S, Mukherjee R, et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1(5):940–51.

    CAS  PubMed  Google Scholar 

  76. Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GF. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(3):542–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Vriesendorp R, Donker AJ, de Zeeuw D, de Jong PE, van der Hem GK. Antiproteinuric effect of naproxen and indomethacin. A double-blind crossover study. Am J Nephrol. 1985;5(4):236–42.

    CAS  PubMed  Google Scholar 

  78. Vogt L, de Zeeuw D, Woittiez AJ, Navis G. Selective cyclooxygenase-2 (COX-2) inhibition reduces proteinuria in renal patients. Nephrol Dial Transplant. 2009;24(4):1182–9.

    CAS  PubMed  Google Scholar 

  79. Nelson DA, Marks ES, Deuster PA, O'Connor FG, Kurina LM. Association of nonsteroidal anti-inflammatory drug prescriptions with kidney disease among active young and middle-aged adults. JAMA Netw Open. 2019;2(2):e187896.

    PubMed  PubMed Central  Google Scholar 

  80. Vegter S, Perna A, Postma MJ, Navis G, Remuzzi G, Ruggenenti P. Sodium intake, ACE inhibition, and progression to ESRD. J Am Soc Nephrol. 2012;23(1):165–73.

    CAS  PubMed  Google Scholar 

  81. Fried LF. Effects of HMG-CoA reductase inhibitors (statins) on progression of kidney disease. Kidney Int. 2008;74(5):571–6.

    CAS  PubMed  Google Scholar 

  82. Bianchi S, Bigazzi R, Caiazza A, Campese VM. A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis. 2003;41(3):565–70.

    CAS  PubMed  Google Scholar 

  83. Wilcox CS. New insights into diuretic use in patients with chronic renal disease. J Am Soc Nephrol. 2002;13(3):798–805.

    PubMed  Google Scholar 

  84. Kaysen GA, Gambertoglio J, Jimenez I, Jones H, Hutchison FN. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int. 1986;29(2):572–7.

    CAS  PubMed  Google Scholar 

  85. Don BR, Kaysen GA, Hutchison FN, Schambelan M. The effect of angiotensin-converting enzyme inhibition and dietary protein restriction in the treatment of proteinuria. Am J Kidney Dis. 1991;17(1):10–7.

    CAS  PubMed  Google Scholar 

  86. Walser M, Hill S, Tomalis EA. Treatment of nephrotic adults with a supplemented, very low-protein diet. Am J Kidney Dis. 1996;28(3):354–64.

    CAS  PubMed  Google Scholar 

  87. Jenkins DJ, Kendall CW, Marchie A, Jenkins AL, Augustin LS, Ludwig DS, et al. Type 2 diabetes and the vegetarian diet. Am J Clin Nutr. 2003;78(3 Suppl):610S–6S.

    CAS  PubMed  Google Scholar 

  88. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007;85(4):1148–56.

    CAS  PubMed  Google Scholar 

  89. Azadbakht L, Atabak S, Esmaillzadeh A. Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial. Diabetes Care. 2008;31(4):648–54.

    CAS  PubMed  Google Scholar 

  90. Pedraza-Chaverri J, Barrera D, Hernandez-Pando R, Medina-Campos ON, Cruz C, Murguía F, et al. Soy protein diet ameliorates renal nitrotyrosine formation and chronic nephropathy induced by puromycin aminonucleoside. Life Sci. 2004;74(8):987–99.

    CAS  PubMed  Google Scholar 

  91. Velasquez MT, Bhathena SJ, Ranich T, Schwartz AM, Kardon DE, Ali AA, et al. Dietary flaxseed meal reduces proteinuria and ameliorates nephropathy in an animal model of type II diabetes mellitus. Kidney Int. 2003;64(6):2100–7.

    CAS  PubMed  Google Scholar 

  92. Tovar AR, Murguia F, Cruz C, Hernández-Pando R, Aguilar-Salinas CA, Pedraza-Chaverri J, et al. A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. J Nutr. 2002;132(9):2562–9.

    CAS  PubMed  Google Scholar 

  93. Kaysen GA. al-Bander H, Martin VI, Jones H, Jr., Hutchison FN. Branched-chain amino acids augment neither albuminuria nor albumin synthesis in nephrotic rats. Am J Phys. 1991;260(2 Pt 2):R177–84.

    CAS  Google Scholar 

  94. Kaysen GA, Martin VI, Jones H Jr. Arginine augments neither albuminuria nor albumin synthesis caused by high-protein diets in nephrosis. Am J Phys. 1992;263(5 Pt 2):F907–14.

    CAS  Google Scholar 

  95. Gentile MG, Fellin G, Cofano F, Delle Fave A, Manna G, Ciceri R, et al. Treatment of proteinuric patients with a vegetarian soy diet and fish oil. Clin Nephrol. 1993;40(6):315–20.

    CAS  PubMed  Google Scholar 

  96. Sieniawska M, Szymanik-Grzelak H, Kowalewska M, Wasik M, Koleska D. The role of cow’s milk protein intolerance in steroid-resistant nephrotic syndrome. Acta Paediatr. 1992;81(12):1007–12.

    CAS  PubMed  Google Scholar 

  97. Alfrey AC. Toxicity of tubule fluid iron in the nephrotic syndrome. Am J Phys. 1992;263(4 Pt 2):F637–41.

    CAS  Google Scholar 

  98. Agarwal R. Vitamin D, proteinuria, diabetic nephropathy, and progression of CKD. Clin J Am Soc Nephrol. 2009;4(9):1523–8.

    CAS  PubMed  Google Scholar 

  99. Rayner BL, Byrne MJ, van Zyl Smit R. A prospective clinical trial comparing the treatment of idiopathic membranous nephropathy and nephrotic syndrome with simvastatin and diet, versus diet alone. Clin Nephrol. 1996;46(4):219–24.

    CAS  PubMed  Google Scholar 

  100. Sahni V, Rosa RM, Batlle D. Potential benefits of alkali therapy to prevent GFR loss: time for a palatable 'solution' for the management of CKD. Kidney Int. 2010;78(11):1065–7.

    CAS  PubMed  Google Scholar 

  101. Phisitkul S, Khanna A, Simoni J, Broglio K, Sheather S, Rajab MH, et al. Amelioration of metabolic acidosis in patients with low GFR reduced kidney endothelin production and kidney injury, and better preserved GFR. Kidney Int. 2010;77(7):617–23.

    CAS  PubMed  Google Scholar 

  102. Goraya N, Simoni J, Jo CH, Wesson DE. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int. 2014;86(5):1031–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubha Ananthakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ananthakrishnan, S., Yeun, J.Y., Kaysen, G.A. (2020). Nephrotic Syndrome. In: Burrowes, J., Kovesdy, C., Byham-Gray, L. (eds) Nutrition in Kidney Disease. Nutrition and Health. Humana, Cham. https://doi.org/10.1007/978-3-030-44858-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44858-5_24

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-44857-8

  • Online ISBN: 978-3-030-44858-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics